首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4854篇
  免费   499篇
  5353篇
  2023年   31篇
  2022年   57篇
  2021年   107篇
  2020年   53篇
  2019年   78篇
  2018年   98篇
  2017年   87篇
  2016年   127篇
  2015年   194篇
  2014年   228篇
  2013年   269篇
  2012年   374篇
  2011年   331篇
  2010年   212篇
  2009年   202篇
  2008年   267篇
  2007年   259篇
  2006年   264篇
  2005年   247篇
  2004年   247篇
  2003年   202篇
  2002年   219篇
  2001年   51篇
  2000年   45篇
  1999年   68篇
  1998年   73篇
  1997年   64篇
  1996年   55篇
  1995年   50篇
  1994年   44篇
  1993年   46篇
  1992年   54篇
  1991年   49篇
  1990年   46篇
  1989年   47篇
  1988年   42篇
  1987年   23篇
  1986年   21篇
  1985年   37篇
  1984年   46篇
  1983年   28篇
  1982年   41篇
  1981年   31篇
  1980年   31篇
  1979年   21篇
  1978年   21篇
  1977年   20篇
  1976年   14篇
  1974年   16篇
  1973年   13篇
排序方式: 共有5353条查询结果,搜索用时 0 毫秒
81.
Monoclonal antibodies are critically important biologics as the largest class of molecules used to treat cancers, rheumatoid arthritis, and other chronic diseases. Antibody glycosylation is a critical quality attribute that has ramifications for patient safety and physiological efficacy—one that can be modified by such factors as media formulation and process conditions during production. Using a design-of-experiments approach, we examined the effect of 2-F-peracetyl fucose (2FP), uridine, and galactose on cell growth and metabolism, titer, and gene expression of key glycosylation-related proteins, and report how the glycoform distribution changed from Days 4 to 7 in a batch process used for IgG1 production from Chinese hamster ovary cells. We observed major glycosylation changes upon supplement addition, where the addition of 2FP decreased antibody fucosylation by up to 48%, galactose addition increased galactosylation by up to 21%, and uridine addition decreased fucosylation and increased galactosylation by 6% and 2%, respectively. Despite having major effects on glycosylation, neither galactose nor 2FP significantly affected cell culture growth, metabolism, or titer. Uridine improved peak cell densities by 23% but also reduced titer by ∼30%. The supplements caused significant changes in gene expression by Day 4 of the cultures where 2FP addition significantly reduced fucosyltransferase 8 and nucleotide sugar transporter gene expression (by ∼2-fold), and uridine addition significantly increased expression of UDP-GlcNAcT (SLC35A3) and B4GALT1–6 genes (by 1.5–3-fold). These gene expression data alongside glycosylation, metabolic, and growth data improve our understanding of the cellular mechanisms affected by media supplementation and suggest approaches for modifying antibody glycosylation in antibody production processes.  相似文献   
82.
The phylogeny and diagenesis of Pleistocene and Recent bivalves were studied immunologically by use of a conventional antiserum elicited against an EDTA‐soluble macromolecular extract from shells of the modern bivalve mollusc Mercenaria mercenaria. ELISA tests of the antiserum with shell fragments of a wide range of modern bivalves gave taxonomically significant results. The antiserum reacted with palaeoheterodonts and heterodonts but not with representatives of other bivalve subclasses. This phylogenetic reactivity was also apparent in tests with fossil shells, although the specificity and overall strength of the reaction were both reduced. Absorption of the antiserum with etched shell powders of various (palaeo)heterodonts yielded more specific antibody preparations.

Investigations of shell matrix diagenesis, using the anti‐Mercenaria serum, demonstrated that small amounts of original determinants could be detected even in fossils over one million years old. The reactivity of the serum with extracts of fossil Mercenaria decreased with sample age. The relationship between serum reactivity and the degree of amino acid racemization was almost linear. Clearly, the various determinants to which antibodies were elicited were being destroyed at different rates.  相似文献   
83.
Mitochondrial research is presently one of the fastest growing disciplines in biomedicine. Since the early 1990s, it has become increasingly evident that mitochondrial dysfunction contributes to a large variety of human disorders, ranging from neurodegenerative and neuromuscular diseases, obesity, and diabetes to ischemia-reperfusion injury and cancer. Most remarkably, mitochondria, the “power house” of the cell, have also become accepted as the “motor of cell death” reflecting their recognized key role during apoptosis. Based on these recent exciting developments in mitochondrial research, increasing pharmacological efforts have been made leading to the emergence of “Mitochondrial Medicine” as a whole new field of biomedical research. The identification of molecular mitochondrial drug targets in combination with the development of methods for selectively delivering biologically active molecules to the site of mitochondria will eventually launch a multitude of new therapies for the treatment of mitochondria-related diseases, which are based either on the selective protection, repair, or eradication of cells. Yet, while tremendous efforts are being undertaken to identify new mitochondrial drugs and drug targets, the development of mitochondria-specific drug carrier systems is lagging behind. To ensure a high efficiency of current and future mitochondrial therapeutics, colloidal vectors, i.e., delivery systems, need to be developed able to selectively transport biologically active molecules to and into mitochondria within living human cells. Here we review ongoing efforts in our laboratory directed toward the development of different phospholipid- and non-phospholipid-based mitochondriotropic drug carrier systems.  相似文献   
84.
85.
Besides the liver, it has been difficult to identify which organ(s) and/or cellular component(s) contribute significantly to the production of human FVIII:c (FVIII). Thus far, only endothelial cells have been shown to constitute a robust extrahepatic source of FVIII, possibly explaining both the diverse presence of FVIII mRNA in the body, and the observed increase in FVIII levels during liver failure. Here, we investigate whether human mesenchymal stem cells (MSC), ubiquitously present in different organs, could also contribute to FVIII production. MSC isolated from human lung, liver, brain, and bone marrow expressed FVIII message as determined by quantitative‐RT‐PCR. Using an antibody specific for FVIII, confocal microscopy, and umbilical cord‐derived endothelial cells (HUVEC) as a negative control, we demonstrated that, in MSC, FVIII protein was not stored in granules; rather, it localized to the perinuclear region. Furthermore, functional FVIII was detected in MSC supernatants and cell lysates by aPTT and chromogenic assays. These results demonstrate that MSC can contribute at low levels to the functional FVIII pool, and advance the understanding of the physiology of FVIII production and secretion. J. Cell. Physiol. © 2012 Wiley Periodicals, Inc.  相似文献   
86.
Cue‐induced heroin seeking after prolonged withdrawal is associated with neuronal activation and altered gene expression in prefrontal cortex (PFC). However, these previous studies assessed gene expression in all neurons regardless of their activity state during heroin seeking. Using Fos as a marker of neural activity, we describe distinct molecular alterations induced in activated versus non‐activated neurons during cue‐induced heroin seeking after prolonged withdrawal. We trained rats to self‐administer heroin for 10 days (6 h/day) and assessed cue‐induced heroin seeking in extinction tests after 14 or 30 days. We used fluorescent‐activated cell sorting (FACS) to purify Fos‐positive and Fos‐negative neurons from PFC 90 min after extinction testing. Flow cytometry showed that Fos‐immunoreactivity was increased in less than 10% of sparsely distributed PFC neurons. mRNA levels of the immediate early genes fosB, arc, egr1, and egr2, as well as npy and map2k6, were increased in Fos‐positive, but not Fos‐negative, neurons. In support of these findings, double‐label immunohistochemistry indicated substantial coexpression of neuropeptide Y (NPY)‐ and Arc‐immunoreactivity in Fos‐positive neurons. Our data indicate that cue‐induced relapse to heroin seeking after prolonged withdrawal induces unique molecular alterations within activated PFC neurons that are distinct from those observed in the surrounding majority of non‐activated neurons.  相似文献   
87.
88.
Assessment of the equilibration kinetics of Patman at the edges of its emission spectra provided additional insights about membrane properties beyond those obtained from end-point fluorescence measurements. Upon introduction of the probe to aqueous suspensions of liposomes, the emission intensity slowly increased about 10-fold (t½ = ~ 100 s). The rate of equilibration depended on emission wavelength, and was usually faster at 500 than at 435 nm. However, this trend was reversed for equilibration with lipids at their phase transition temperature. The apparent rotational motion of the dye also differed between the long and short emission wavelengths but did not display the slow equilibration time dependence observed with intensity measurements. These results suggested that slow equilibration reflects relaxation of the immediate membrane microenvironment around the probe rather than slow insertion into the membrane. The data were rationalized with a model that allows two membrane/probe configurations with distinct microenvironments. The analysis suggests that by monitoring the equilibration pattern of Patman, inferences can be made regarding the polarity of two microenvironments occupied by the probe, the distribution of the probe among those microenvironments, and the kinetics with which they relax to equilibrium.  相似文献   
89.
The study of juvenile skeletal remains can yield important insights into the health, behavior, and biological relationships of past populations. However, most studies of past skeletal growth have been limited to relatively simple metrics. Considering additional skeletal parameters and taking a broader physiological perspective can provide a more complete assessment of growth patterns and environmental and genetic effects on those patterns. We review here some alternative approaches to ontogenetic studies of archaeological and paleontological skeletal material, including analyses of body size (stature and body mass) and cortical bone structure of long bone diaphyses and the mandibular corpus. Together such analyses can shed new light on both systemic and localized influences on bone growth, and the metabolic and mechanical factors underlying variation in growth. Am J Phys Anthropol, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   
90.
Chemical synthesis of the deuterium isotope desmosine-d4 has been achieved. This isotopic compound possesses all four deuterium atoms at the alkanyl carbons of the alkyl amino acid substitution in the desmosine molecule and is stable toward acid hydrolysis; this is required in the measurement of two crosslinking molecules, desmosine and isodesmosine, as biomarkers of elastic tissue degradation. The degradation of elastin occurs in several widely prevalent diseases. The synthesized desmosine-d4 is used as the internal standard to develop an accurate and sensitive isotope-dilution liquid chromatography–tandem mass spectrometry analysis, which can serve as a generalized method for an accurate analysis of desmosine and isodesmosine as biomarkers in many types of biological tissues involving elastin degradation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号