全文获取类型
收费全文 | 3083篇 |
免费 | 283篇 |
专业分类
3366篇 |
出版年
2022年 | 17篇 |
2021年 | 37篇 |
2020年 | 13篇 |
2019年 | 26篇 |
2018年 | 35篇 |
2017年 | 29篇 |
2016年 | 53篇 |
2015年 | 90篇 |
2014年 | 141篇 |
2013年 | 167篇 |
2012年 | 203篇 |
2011年 | 195篇 |
2010年 | 128篇 |
2009年 | 123篇 |
2008年 | 159篇 |
2007年 | 168篇 |
2006年 | 187篇 |
2005年 | 174篇 |
2004年 | 168篇 |
2003年 | 144篇 |
2002年 | 168篇 |
2001年 | 32篇 |
2000年 | 32篇 |
1999年 | 53篇 |
1998年 | 61篇 |
1997年 | 47篇 |
1996年 | 45篇 |
1995年 | 42篇 |
1994年 | 33篇 |
1993年 | 36篇 |
1992年 | 47篇 |
1991年 | 41篇 |
1990年 | 40篇 |
1989年 | 32篇 |
1988年 | 37篇 |
1987年 | 17篇 |
1986年 | 16篇 |
1985年 | 30篇 |
1984年 | 34篇 |
1983年 | 21篇 |
1982年 | 33篇 |
1981年 | 26篇 |
1980年 | 24篇 |
1979年 | 16篇 |
1978年 | 17篇 |
1977年 | 16篇 |
1976年 | 11篇 |
1974年 | 10篇 |
1973年 | 12篇 |
1972年 | 10篇 |
排序方式: 共有3366条查询结果,搜索用时 14 毫秒
81.
82.
Theendakara V Tromp G Kuivaniemi H White PS Panchal S Cox J Winters RS Riebeling P Tost F Hoeltzenbein M Tervo TM Henn W Denniger E Krause M Koksal M Kargi S Ugurbas SH Latvala T Shearman AM Weiss JS 《Human genetics》2004,114(6):594-600
Schnyders crystalline corneal dystrophy (SCCD) is a rare autosomal dominant eye disease with a spectrum of clinical manifestations that may include bilateral corneal clouding, arcus lipoides, and anterior corneal crystalline cholesterol deposition. We have previously performed a genome-wide linkage analysis on two large Swede-Finn families and mapped the SCCD locus to a 16-cM interval between markers D1S2633 and D1S228 on chromosome 1p36. We have collected 11 additional families from Finland, Germany, Turkey, and USA to narrow the critical region for SCCD. Here, we have used haplotype analysis with densely spaced microsatellite markers in a total of 13 families to refine the candidate interval. A common disease haplotype was observed among the four Swede-Finn families indicating the presence of a founder effect. Recombination results from all 13 families refined the SCCD locus to 2.32 Mbp between markers D1S1160 and D1S1635. Within this interval, identity-by-state was present in all 13 families for two markers D1S244 and D1S3153, further refining the candidate region to 1.58 Mbp. 相似文献
83.
Srikanth Mairpady Shambat Axana Haggar Francois Vandenesch Gerard Lina Willem J. B. van Wamel Gayathri Arakere Mattias Svensson Anna Norrby-Teglund 《PloS one》2014,9(8)
Epidemiological studies of Staphylococcus aureus have shown a relation between certain clones and the presence of specific virulence genes, but how this translates into virulence-associated functional responses is not fully elucidated. Here we addressed this issue by analyses of community-acquired S. aureus strains characterized with respect to antibiotic resistance, ST types, agr types, and virulence gene profiles. Supernatants containing exotoxins were prepared from overnight bacterial cultures, and tested in proliferation assays using human peripheral blood mononuclear cells (PBMC). The strains displayed stable phenotypic response profiles, defined by either a proliferative or cytotoxic response. Although, virtually all strains elicited superantigen-mediated proliferative responses, the strains with a cytotoxic profile induced proliferation only in cultures with the most diluted supernatants. This indicated that the superantigen-response was masked by a cytotoxic effect which was also confirmed by flow cytometry analysis. The cytotoxic supernatants contained significantly higher levels of α-toxin than did the proliferative supernatants. Addition of α-toxin to supernatants characterized as proliferative switched the response into cytotoxic profiles. In contrast, no effect of Panton Valentine Leukocidin, δ-toxin or phenol soluble modulin α-3 was noted in the proliferative assay. Furthermore, a significant association between agr type and phenotypic profile was found, where agrII and agrIII strains had predominantly a proliferative profile whereas agrI and IV strains had a predominantly cytotoxic profile. The differential response profiles associated with specific S. aureus strains with varying toxin production could possibly have an impact on disease manifestations, and as such may reflect specific pathotypes. 相似文献
84.
Optical lock-in detection of FRET using synthetic and genetically encoded optical switches 下载免费PDF全文
Mao S Benninger RK Yan Y Petchprayoon C Jackson D Easley CJ Piston DW Marriott G 《Biophysical journal》2008,94(11):4515-4524
The Förster resonance energy transfer (FRET) technique is widely used for studying protein interactions within live cells. The effectiveness and sensitivity of determining FRET, however, can be reduced by photobleaching, cross talk, autofluorescence, and unlabeled, endogenous proteins. We present a FRET imaging method using an optical switch probe, Nitrobenzospiropyran (NitroBIPS), which substantially improves the sensitivity of detection to <1% FRET efficiency. Through orthogonal optical control of the colorful merocyanine and colorless spiro states of the NitroBIPS acceptor, donor fluorescence can be measured both in the absence and presence of FRET in the same FRET pair in the same cell. A SNAP-tag approach is used to generate a green fluorescent protein-alkylguaninetransferase fusion protein (GFP-AGT) that is labeled with benzylguanine-NitroBIPS. In vivo imaging studies on this green fluorescent protein-alkylguaninetransferase (GFP-AGT) (NitroBIPS) complex, employing optical lock-in detection of FRET, allow unambiguous resolution of FRET efficiencies below 1%, equivalent to a few percent of donor-tagged proteins in complexes with acceptor-tagged proteins. 相似文献
85.
Niels Andreasen Monica Simeoni Henrik Ostlund Pia I. Lisjo Tormod Fladby Amy E. Loercher Gerard J. Byrne Frances Murray Paul T. Scott-Stevens Anders Wallin Yinghua Y. Zhang Lena H. Bronge Henrik Zetterberg Agneta K. Nordberg Astrid J. Yeo Shahid A. Khan Jan Hilpert Prafull C. Mistry 《PloS one》2015,10(3)
Objective
To assess the safety, tolerability, pharmacokinetics, and pharmacodynamics of the Fc-inactivated anti-β amyloid (Aβ) monoclonal antibody (mAb) GSK933776 in patients with mild Alzheimer’s disease (AD) or mild cognitive impairment (MCI).Methods
This was a two-part, single blind, placebo-controlled, first-time-in-human (FTIH) study of single (n = 18) and repeat dose (n = 32) intravenous GSK933776 0.001–6 mg/kg (ClinicalTrials.gov: NCT00459550). Additional safety data from an open-label, uncontrolled, single dose study of intravenous GSK933776 1–6 mg/kg (n = 18) are included (ClinicalTrials.gov: NCT01424436).Results
There were no cases of amyloid-related imaging abnormalities-edema (ARIA-E) or –hemorrhage (ARIA-H) after GSK933776 administration in both studies. Three patients across the two studies developed anti-GSK933776 antibodies. Plasma GSK933776 half-life (t1/2) was 10–15 days after repeat dosing. After each of three administrations of GSK933776, plasma levels of total Aβ42 and Aβ increased whereas plasma levels of free Aβ decreased dose dependently; no changes were observed for placebo. For total Aβ42 the peak:trough ratio was ≤2 at doses ≥3 mg/kg; for total Aβ the ratio was ≤2 at 6 mg/kg. CSF concentrations of Aβ showed increases from baseline to week 12 for Aβ X–38 (week 12:baseline ratio: 1.65; 95%CI: 1.38, 1.93) and Aβ X–42 (week 12:baseline ratio: 1.18; 95%CI: 1.06, 1.30) for values pooled across doses.Conclusion
In this FTIH study the Fc-inactivated anti-Aβ mAb GSK933776 engaged its target in plasma and CSF without causing brain ARIA-E/H in patients with mild AD or MCI.Trial Registration
ClinicalTrials.gov NCT00459550 相似文献86.
C Gerard L Bao O Orozco M Pearson D Kunz N P Gerard 《Journal of immunology (Baltimore, Md. : 1950)》1992,149(8):2600-2606
The mouse C5a receptor gene was isolated using the human C5a receptor cDNA probe recently described (Gerard, N. P., and C. Gerard. 1991. Nature 349:614). By analogy with the human gene, the mouse homolog contains two exons with the 5' untranslated region and initiating methionine codon present in exon 1 and the remainder of the molecule in exon 2. Generation of an expressible cDNA for the mouse C5a receptor was accomplished using the polymerase chain reaction and a sense oligodeoxynucleotide primer which included an initiation codon just 5' to the sequence encoding the N-linked glycosylation site. When transfected into human 293 kidney epithelial cells the cloned cDNA directs expression of a binding site for human C5a anaphylatoxin with a binding constant of 2.5 +/- 0.3 nM; the human C5a receptor expressed under identical conditions has a Kd of 1.7 +/- 0.2 nM. Overall, the deduced amino acid sequences of the receptors are 65% identical given the analogous gene structures. Alignment of the sequences as seven transmembrane segment receptors reveals that the greatest structural diversity (approximately 70%) exists in the putative extracellular domains. In contrast, species differences among other members of this family of seven membrane-spanning receptors is generally only 10 to 20%, even for receptors whose ligands are relatively small and not expected to interact with sites on the extracellular surfaces. A high degree of structural identify is observed for the C5a receptors in the transmembrane segments and in all but one of the loops predicted to exist in the cytoplasm. Inasmuch as critical structures responsible for high affinity binding of the 74 amino acid polypeptide to both C5a receptors involve features conserved between species, these data provide the starting point for mutagenesis studies to determine the nature of the binding and activation sites for the chemotactic receptors. Additionally, these data provide a reagent for immunologic and molecular genetic studies on the role of C5a receptors in inflammatory models. 相似文献
87.
88.
89.
Susan M. VanRheenen Xiaochun Cao Vladimir V. Lupashin Charles Barlowe M. Gerard Waters 《The Journal of cell biology》1998,141(5):1107-1119
SEC35 was identified in a novel screen for temperature-sensitive mutants in the secretory pathway of the yeast Saccharomyces cerevisiae (Wuestehube et al., 1996. Genetics. 142:393–406). At the restrictive temperature, the sec35-1 strain exhibits a transport block between the ER and the Golgi apparatus and accumulates numerous vesicles. SEC35 encodes a novel cytosolic protein of 32 kD, peripherally associated with membranes. The temperature-sensitive phenotype of sec35-1 is efficiently suppressed by YPT1, which encodes the rab-like GTPase required early in the secretory pathway, or by SLY1-20, which encodes a dominant form of the ER to Golgi target -SNARE–associated protein Sly1p. Weaker suppression is evident upon overexpression of genes encoding the vesicle-SNAREs SEC22, BET1, or YKT6. The cold-sensitive lethality that results from deleting SEC35 is suppressed by YPT1 or SLY1-20. These genetic relationships suggest that Sec35p acts upstream of, or in conjunction with, Ypt1p and Sly1p as was previously found for Uso1p. Using a cell-free assay that measures distinct steps in vesicle transport from the ER to the Golgi, we find Sec35p is required for a vesicle docking stage catalyzed by Uso1p. These genetic and biochemical results suggest Sec35p acts with Uso1p to dock ER-derived vesicles to the Golgi complex.Protein transport through the secretory pathway occurs via transport vesicles under the direction of a large set of protein components (Rothman, 1994). The process can be divided into three stages: (a) vesicle budding, (b) vesicle docking, and (c) membrane fusion, with distinct sets of proteins mediating each phase. The budding step involves recruitment of coat proteins to the membrane and culminates with the release of coated vesicles (Schekman and Orci, 1996). The docking reaction is likely to require a set of integral membrane proteins on the vesicle and target membranes, termed v-SNAREs1 and t-SNAREs (vesicle- and target membrane-soluble N-ethylmaleimide–sensitive fusion protein [NSF] attachment protein [SNAP] receptors, respectively), that are thought to confer specificity through their pair-wise interactions (Söllner et al., 1993b
). Small GTP-binding proteins of the rab family also assist in the docking process (Ferro-Novick and Novick, 1993), but their precise function is not known. The fusion step ensues after docking and results in the delivery of the vesicular cargo to the next compartment in the secretory pathway.Vesicular transport from the ER to the Golgi apparatus in the yeast Saccharomyces cerevisiae has been extensively characterized. Transport vesicle budding involves the assembly of the COPII coat, composed of the Sec13p/Sec31p (Pryer et al., 1993; Salama et al., 1993; Barlowe et al., 1994) and Sec23p/Sec24p heterodimers (Hicke and Schekman, 1989; Hicke et al., 1992), under the direction of an integral membrane protein, Sec12p (Nakano et al., 1988; Barlowe and Schekman, 1993), a small GTPase, Sar1p (Nakano and Muramatsu, 1989), and a multidomain protein, Sec16p (Espenshade et al., 1995; Shaywitz et al., 1997). Docking is thought to require a tethering event mediated by Uso1p (Cao et al., 1998), the yeast homologue of mammalian p115 (Barroso et al., 1995; Sapperstein et al., 1995), followed by or concurrent with the interaction of a set of ER to Golgi v-SNAREs, Bet1p, Bos1p, Sec22p (Newman and Ferro-Novick, 1987; Newman et al., 1990; Ossig et al., 1991; Shim et al., 1991; Søgaard et al., 1994) and perhaps Ykt6p (Søgaard et al., 1994; McNew et al., 1997), with the cognate t-SNARE on the Golgi, Sed5p (Hardwick and Pelham, 1992). For some time it was thought that fusion may be initiated by disassembly of the v/t-SNARE complex (Söllner et al., 1993a
) by yeast SNAP, Sec17p, (Griff et al., 1992) and NSF, Sec18p (Eakle et al., 1988; Wilson et al., 1989). However, this concept has been challenged by studies with a yeast system that reconstitutes homotypic vacuolar fusion, which suggests the action of Sec18p is before vesicle docking (Mayer et al., 1996; Mayer and Wickner, 1997). In addition, a prefusion role for NSF has been supported by the recent finding that liposomes bearing SNAREs alone can fuse in the absence of NSF (Weber et al., 1998).Several proteins involved in the regulation of yeast ER to Golgi v/t-SNARE complex assembly have been identified, including Ypt1p, Uso1p, and Sly1p. Ypt1p is a member of the rab family of small GTP-binding proteins that have been identified as important components of almost every stage in the secretory pathway (Ferro-Novick and Novick, 1993). Hydrolysis of GTP by rab-like proteins has been hypothesized to provide the regulatory switch that controls the fidelity of vesicular transport (Bourne, 1988). A second protein, Uso1p (Nakajima et al., 1991), appears to function in the same pathway as Ypt1p (Sapperstein et al., 1996), and both proteins have been demonstrated to be essential for SNARE complex assembly (Søgaard et al., 1994; Sapperstein et al., 1996; Lupashin and Waters, 1997). The third protein, Sly1p, is associated with the t-SNARE Sed5p (Søgaard et al., 1994). SLY1 is an essential gene in yeast (Dascher et al., 1991; Ossig et al., 1991), and Sly1p is required for ER to Golgi transport in vitro (Lupashin et al., 1996) and in vivo (Ossig et al., 1991). However, several lines of evidence, particularly from Sly1p homologues in other organisms, indicate that Sly1p may also function as a negative regulator of v/t-SNARE complex assembly, perhaps by preventing the association of the v- and t-SNAREs (Hosono et al., 1992; Pevsner et al., 1994; Schulze et al., 1994). A dominant allele of SLY1, termed SLY1-20, is capable of suppressing mutations in YPT1 and USO1, including complete deletions (Dascher et al., 1991; Sapperstein et al., 1996). Thus, in the presence of Sly1-20p, two components required for SNARE complex assembly are no longer essential. We have proposed a model (Sapperstein et al., 1996; Lupashin and Waters, 1997) in which Ypt1p and Uso1p function to relieve the inhibitory action of Sly1p on SNARE complex assembly. In this model Sly1-20p can be thought of as a noninhibitory form of SLY1 that renders Ypt1p and Uso1p superfluous.We believe that the ability of SLY1-20 to suppress defects in upstream docking regulators can be used to identify additional components involved in the regulation of vesicular docking. We have undertaken a genetic screen (to be presented elsewhere) to isolate novel components in this pathway which, when mutated, depend upon Sly1-20p for viability. In the course of this work, we discovered that two recently identified mutants, sec34 and sec35, can be suppressed by SLY1-20 and thus satisfy the criterion of our screen. These mutants were isolated in a novel screen to identify components involved in transport at any step between the ER and the trans-Golgi network (i.e., the Kex2p compartment) in yeast (Wuestehube et al., 1996). Both sec34 and sec35 accumulate the core-glycosylated form of secretory proteins at the nonpermissive temperature, indicating a block in ER to Golgi transport. Furthermore, electron microscopy indicated that both sec34 and sec35 accumulate numerous vesicles upon shift to the restrictive temperature (Wuestehube et al., 1996), a hallmark of genes whose protein products are involved in the docking or fusion phase of transport (Kaiser and Schekman, 1990). In this report we describe the cloning of SEC35 and analysis of its genetic interactions with other secretory genes. Strong genetic interaction between SEC35 and SLY1, YPT1, and USO1 suggests that Sec35p may function in vesicle docking. To test this possibility, we devised an in vitro transport assay that depends on the addition of purified Sec35p and Uso1p. Vesicles synthesized in the absence of functional Sec35p do not fuse with the Golgi compartment and remain as freely diffusible intermediates. Upon addition of Sec35p and Uso1p, vesicles dock to the Golgi and proceed to membrane fusion. Requirements for Sec35p at the vesicle docking step correlates our genetic experiments with the biochemically distinguishable steps of vesicle docking and membrane fusion. 相似文献
90.