首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12480篇
  免费   1701篇
  国内免费   4篇
  2021年   142篇
  2018年   107篇
  2016年   183篇
  2015年   314篇
  2014年   376篇
  2013年   448篇
  2012年   571篇
  2011年   580篇
  2010年   401篇
  2009年   347篇
  2008年   522篇
  2007年   583篇
  2006年   484篇
  2005年   548篇
  2004年   561篇
  2003年   522篇
  2002年   519篇
  2001年   244篇
  2000年   257篇
  1999年   283篇
  1998年   174篇
  1997年   160篇
  1996年   158篇
  1995年   126篇
  1994年   136篇
  1993年   128篇
  1992年   248篇
  1991年   219篇
  1990年   225篇
  1989年   217篇
  1988年   201篇
  1987年   212篇
  1986年   197篇
  1985年   207篇
  1984年   226篇
  1983年   182篇
  1982年   170篇
  1981年   185篇
  1980年   174篇
  1979年   189篇
  1978年   178篇
  1977年   162篇
  1976年   156篇
  1975年   146篇
  1974年   145篇
  1973年   155篇
  1972年   118篇
  1971年   122篇
  1970年   113篇
  1969年   120篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
We have studied how low pH affects the water-oxidizing complex in Photosystem II when depleted of the essential Ca(2+) ion cofactor. For these samples, it was found that the EPR signal from the Y(Z)(*) radical decays faster at low pH than at high pH. At 20 degrees C, Y(Z)(*) decays with biphasic kinetics. At pH 6.5, the fast phase encompasses about 65% of the amplitude and has a lifetime of approximately 0.8 s, while the slow phase has a lifetime of approximately 22 s. At pH 3.9, the kinetics become totally dominated by the fast phase, with more than 90% of the signal intensity operating with a lifetime of approximately 0.3 s. The kinetic changes occurred with an approximate pK(a) of 4.5. Low pH also affected the induction of the so-called split radical EPR signal from the S(2)Y(Z)(*) state that is induced in Ca(2+)-depleted PSII membranes because of an inability of Y(Z)(*) to oxidize the S(2) state. At pH 4.5, about 50% of the split signal was induced, as compared to the amplitude of the signal that was induced at pH 6.5-7, using similar illumination conditions. Thus, the split-signal induction decreased with an apparent pK(a) of 4.5. In the same samples, the stable multiline signal from the S(2) state, which is modified by the removal of Ca(2+), was decreased by the illumination to the same extent at all pHs. It is proposed that decreased induction of the S(2)Y(Z)(*) state at lower pH was not due to inability to oxidize the modified S(2) state induced by the Ca(2+) depletion. Instead, we propose that the low pH makes Y(Z)(*) able to oxidize the S(2) state, making the S(2) --> S(3) transition available in Ca(2+)-depleted PSII. Implications of these results for the catalytic role of Ca(2+) and the role of proton transfer between the Mn cluster and Y(Z) during oxygen evolution is discussed.  相似文献   
992.
993.
Ammonium salt of N-(dithiocarboxy)sarcosine (DTCS) chelated to ferrous salt was tested as an NO-metric spin trap at room temperature for ex vivo measurement of (.)NO production in murine endotoxaemia. In a chemically defined in vitro model system EPR triplet signals of NO-Fe(DTCS)(2) were observed for as long as 3 hours, only if samples were reduced with sodium dithionite. This procedure was not necessary for the ex vivo detection of (.)NO in endotoxaemic liver homogenates at X-band or in the whole intact organs at S-band, whereas only a weak signal was observed in endotoxaemic lung. These results suggest that in endotoxaemia not only high level of (.)NO, but also the redox properties of liver and lung might determine the formation of complexes of (.)NO with a spin trap. Nevertheless, both S- and X-band EPR spectroscopy is suitable for (.)NO-metry at room temperature using Fe(DTCS)(2) as the spin trapping agent. In particular, S-band EPR spectroscopy enables the detection of (.)NO production in a whole organ, such as murine liver.  相似文献   
994.
The terrestrial plant Borszczowia aralocaspica (Chenopodiaceae) has recently been shown to contain the entire C(4) photosynthesis mechanism within individual, structurally and biochemically polarized chlorenchyma cells rather than in a dual cell system, as has been the paradigm for this type of carbon fixation (Nature 414: 543-546, 2001). Analysis of carbon isotope composition and (14)CO(2) fixation shows that photosynthesis and growth of B. aralocaspica occurs through carbon acquired by C(4) photosynthesis. The development of this unique single-cell C(4) system in chlorenchyma cells was studied by analysis of young (0.2-0.3 cm length), intermediate (ca. 0.5-0.6 cm length), and mature leaves (ca. 3 cm length). The length of chlorenchyma cells approximately doubles from young to intermediate and again from intermediate to the mature leaf stage. In young chlorenchyma cells, there is a single type of chloroplast; the chloroplasts are evenly distributed throughout the cytosol, and all contain starch and rubisco. During leaf development, the activities of phosphoenolpyruvate carboxylase (PEPC; which is cytosolic), rubisco, and pyruvate,Pi dikinase (PPDK) increase on a chlorophyll basis. As leaves mature, chloroplasts differentiate into two distinct structural and biochemical types that are spatially separated into the proximal and distal parts of the cell (the proximal end being closest to the center of the leaf). The early stages of this polarization are observed in intermediate leaves, and the polarization is fully developed in mature leaves. The chloroplasts in the distal ends of the cell have reduced grana and little starch, while those at the proximal ends have well-developed grana and abundant starch. In mature leaves, PPDK is expressed in chloroplasts at the distal end of the cells, while rubisco and adenosine diphosphate glucose (ADPG) pyrophosphorylase are selectively expressed in chloroplasts at the proximal end of the cell. Mitochondrial polarization also occurs during development as nicotinamide-adenine dinucleotide phosphate-malic enzyme (NAD-ME) and the photorespiratory enzyme glycine decarboxylase are expressed in mature but not young leaves and are localized in mitochondria at the proximal end of the cells. The data show that single-cell C(4) develops from a single pool of identical organelles that develop differential biochemical functions and spatial partitioning in the cell during maturation.  相似文献   
995.
BACKGROUND: We report a case of malignant fibrous histiocytoma, giant cell type (MFHGC), of the breast. A review of the literature failed to reveal cytology-based reports on this entity. The cytologic similarity of breast MFHGC on fine needle aspiration biopsy (FNAB) to other malignant breast neoplasms, including carcinoma with osteoclastlike giant cells, metaplastic carcinoma and breast sarcomas, as well as benign reactive processes, makes the recognition of this tumor challenging. CASE: A 72-year-old woman presented with a 5-month history of an enlarging breast mass. FNAB of the mass showed a hypercellular smear composed of cohesive, branching clusters of spindle cells with ovoid, focally hyperchromatic nuclei and inconspicuous nucleoli. Interspersed osteoclastlike giant cells, some associated with clusters of spindle cells, were uniformly seen throughout the smear. The background was hemorrhagic, with cellular debris and occasional spindle cells and lymphocytes. No ductal epithelial or myoepithelial cells were seen. An incisional biopsy was performed, followed by radical mastectomy. The histologic examination was diagnostic of MFHGC. The diagnosis was supported by immunohistochemical and electron microscopic studies. CONCLUSION: MFHGC, also called primary giant cell tumor of soft tissues, is composed of a mixture of histiocytes, fibroblasts and bland-appearing osteoclastlike giant cells with a multinodular growth pattern. Although MFHGC rarely occurs in the breast and the definitive diagnosis is difficult based on cytology alone, the diagnosis can be considered when a cytologic examination reveals a hypercellular, spindle cell smear with osteoclastlike giant cells in the absence of ductal epithelial or myoepithelial cells.  相似文献   
996.
Studies of the regulation of iNOS expression have provided many contradictory results. Comparing iNOS expression profile between cell types or organs of the same animal under the same experimental conditions may provide an explanation for these conflicting results. We have examined iNOS mRNA and protein expression in heart and liver of the same group of pigs. We found that there is a sharp difference in iNOS expression between heart and liver. The iNOS mRNA and protein was constitutively expressed in the heart at high level, but was not detectable in the liver of the same control animal. Lipopolysaccharide (LPS, 100 microg/kg, i.v.) caused a marked iNOS induction in the liver, but significantly down-regulated iNOS expression in the heart. This differential iNOS expression appears to be physiologically relevant, since LPS and the iNOS inhibitor, S-methylisothiourea, exerted different effects on hepatic and myocardial blood flow. Our data demonstrate a fundamental difference in iNOS regulation in the heart and liver of swine, and may explain the contradictory data on the regulation of iNOS expression.  相似文献   
997.
Human kallikrein 6 (hK6) is a trypsin-like serine protease, member of the human kallikrein gene family. Studies suggested a potential involvement of hK6 in the development and progression of Alzheimer's disease. The serum levels of hK6 might be used as a biomarker for ovarian cancer. To gain insights into the physiological role of this enzyme, we sought to determine its substrate specificity and its interactions with various inhibitors. We produced the proform of hK6 and showed that this enzyme was able to autoactivate, as well as proteolyse itself, leading to inactivation. Kinetic studies indicated that hK6 cleaved with much higher efficiency after Arg than Lys and with a preference for Ser or Pro in the P2 position. The efficient degradation of fibrinogen and collagen types I and IV by hK6 indicated that this kallikrein might play a role in tissue remodeling and/or tumor invasion and metastasis. We also demonstrated proteolysis of amyloid precursor protein by hK6 and determined the cleavage sites at the N-terminal end of the protein. Inhibition of hK6 was achieved via binding to different serpins, among which antithrombin III was the most efficient.  相似文献   
998.
Caveolin-1 null (-/-) mice show dramatic reductions in life span   总被引:7,自引:0,他引:7  
Caveolae are 50-100 nm flask-shaped invaginations of the plasma membrane found in most cell types. Caveolin-1 is the principal protein component of caveolae membranes in nonmuscle cells. The recent development of Cav-1-deficient mice has allowed investigators to study the in vivo functional role of caveolae in the context of a whole animal model, as these mice lack morphologically detectable caveolae membrane domains. Surprisingly, Cav-1 null mice are both viable and fertile. However, it remains unknown whether loss of caveolin-1 significantly affects the overall life span of these animals. To quantitatively determine whether loss of Cav-1 gene expression confers any survival disadvantages with increasing age, we generated a large cohort of mice (n = 180), consisting of Cav-1 wild-type (+/+) (n = 53), Cav-1 heterozygous (+/-) (n = 70), and Cav-1 knockout (-/-) (n = 57) animals, and monitored their long-term survival over a 2 year period. Here, we show that Cav-1 null (-/-) mice exhibit an approximately 50% reduction in life span, with major declines in viability occurring between 27 and 65 weeks of age. However, Cav-1 heterozygous (+/-) mice did not show any changes in long-term survival, indicating that loss of both Cav-1 alleles is required to mediate a reduction in life span. Mechanistically, these dramatic reductions in life span appear to be secondary to a combination of pulmonary fibrosis, pulmonary hypertension, and cardiac hypertrophy in Cav-1 null mice. Taken together, our results provide the first demonstration that loss of Cav-1 gene expression and caveolae organelles dramatically affects the long-term survival of an organism. In addition, aged Cav-1 null mice may provide a new animal model to study the pathogenesis and treatment of progressive hypertrophic cardiomyopathy and sudden cardiac death syndrome.  相似文献   
999.
K(+) channels may regulate cell cycling, cell volume, and cell proliferation. We have recently shown a role for an inwardly rectifying K(+) channel, Kir6.1/SUR2(B), in the regulation of cell proliferation during early kidney development. Here, we show that the protein of a further K(+) channel, Kir1.1 (ROMK), is also developmentally expressed in prenatal rat kidney epithelia. In the embryonic stage, Kir1.1 protein was localized to the plasma membrane of ureteric buds and collecting ducts, and of nephron stages up to the comma-shaped body. Experimental increase in cAMP upregulated Kir1.1b (ROMK2) mRNA abundance in ureteric buds. Kir1.1 protein was restricted to the distal nephron during later postnatal development and adulthood, as has been reported. In conclusion, we demonstrate redundancy of Kir channel expression in early embryonic kidney which could suggest that Kir1.1 acts in a similar way as Kir6.1/SUR2(B) to promote cell proliferation or other developmental functions.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号