首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   754篇
  免费   71篇
  国内免费   1篇
  2023年   6篇
  2022年   14篇
  2021年   19篇
  2020年   13篇
  2019年   17篇
  2018年   21篇
  2017年   15篇
  2016年   28篇
  2015年   35篇
  2014年   39篇
  2013年   61篇
  2012年   76篇
  2011年   54篇
  2010年   38篇
  2009年   33篇
  2008年   55篇
  2007年   49篇
  2006年   35篇
  2005年   36篇
  2004年   32篇
  2003年   33篇
  2002年   31篇
  2001年   5篇
  2000年   5篇
  1999年   10篇
  1998年   5篇
  1997年   7篇
  1996年   3篇
  1995年   4篇
  1994年   3篇
  1993年   4篇
  1992年   4篇
  1991年   2篇
  1990年   2篇
  1989年   2篇
  1983年   2篇
  1981年   4篇
  1973年   2篇
  1972年   1篇
  1970年   2篇
  1967年   1篇
  1965年   1篇
  1962年   1篇
  1961年   2篇
  1959年   1篇
  1958年   2篇
  1957年   1篇
  1956年   1篇
  1916年   1篇
  1900年   1篇
排序方式: 共有826条查询结果,搜索用时 15 毫秒
111.
A 25 amino acid segment (Glu666-Pro691) of the II-III loop of the alpha1 subunit of the skeletal dihydropyridine receptor, but not the corresponding cardiac segment (Asp788-Pro814), activates skeletal ryanodine receptors. To identify the structural domains responsible for activation of skeletal ryanodine receptors, we systematically replaced amino acids of the cardiac II-III loop with their skeletal counterparts. A cluster of five basic residues of the skeletal II-III loop (681RKRRK685) was indispensable for activation of skeletal ryanodine receptors. In the cardiac segment, a negatively charged residue (Glu804) appears to diminish the electrostatic potential created by this basic cluster. In addition, Glu800 in the group of negatively charged residues 798EEEEE802 of the cardiac II-III loop may serve to prevent the binding of the activation domain.  相似文献   
112.
Demographic studies of endemic and threatened plant species are essential for establishing effective conservation strategies. This paper aims to determine the structure and dynamics of the only natural population reported for Zamia inermis. All individuals were mapped to determine the spatial structure and patterns of association between categories and sexes. Matrix analysis were conducted to determine the population dynamics based on three on-site visits. The population is distributed randomly, although seedlings were found to be aggregated at all scales, juveniles are aggregated in smaller radii up to 4.5 m and males at radii above 3.5 m. Seedlings and juveniles are associated with males over greater radii of 3 m, the dependence of adults from earlier categories and females is less than 1.5 m. The population growth rate confirms that the population is in decline (λ = 0.963 ± 0.011). Although few juveniles were identified and no seedling survival was observed in the field, also the amount of viable seeds per female cone is low. However, inhabitants of the region are cultivating the species by germinating seeds in backyard nurseries with 92 of 954 seeds reaching the juvenile category to date. It is clear that the population has lost its regenerative potential and is simply holding on to persistence of adults, this implies a great risk to the species. Ex situ propagation is encouraged.  相似文献   
113.
Interspecific gene flow is a common phenomenon in Nothofagaceae species; however, the dynamics of introgression in hybrid zones remains largely unknown. We focused on two ecologically and morphologically different Nothofagus species from Patagonia, Nothofagus nervosa and Nothofagus obliqua. In a natural hybrid zone, we established two plots 280 m apart in altitude (ca. 1.9 °C difference in mean temperature), and two subplots which captured microsite variation (abundance and spatial distribution of species and predominance of wind direction). We used intensive sampling of individuals (2055, including adults and regeneration) and molecular genotyping of 6 highly species-specific nuclear microsatellites for the identification and classification of hybrids, based on estimates of ancestry and interclass heterozygosity. We evaluated the relative contribution of our sampling effects to variation in hybrid incidence and direction of introgression using generalized linear mixed effects models. We determined that introgressive hybridization occurs at a global rate of 7.8% and that variation was mostly explained by plots (frequency at low altitude was approximately twice that found at high altitude), while it was less influenced by subplots. The high altitude plot was dominated by late-generation backcrosses to N. obliqua (asymmetric bimodality), whereas the low altitude plot consisted of intermediate hybrids (unimodality) and showed asymmetry for introgression between subplots. Differences were not detected between adults and regeneration, suggesting early-acting reproductive isolating barriers. F1 hybrids occur at a global frequency of 3.8%, and are fertile, as the detection of first- and late-generation hybrids indicates.  相似文献   
114.
Using numerical techniques, we explored the dynamics of a one-dimensional,six-component nutrient–phytoplankton–zooplankton(NPZ) model in which zooplankton grazed on a mixed prey field.Five alternative functional forms were implemented to describezooplankton grazing, and the form for predation on mesozooplanktonwas prescribed by a product of a specific predation rate (h)and the mesozooplankton concentration raised to a power (q),which we varied between one and two. With all five grazing functions,Hopf bifurcations, where the form of the solution transitionedbetween steady equilibrium and periodic limit cycles, persistedacross the qh parameter space. Regardless of the valuesof h and q, with some forms of the grazing function, we wereunable to find steady equilibrium solutions that simultaneouslycomprised non-zero concentrations for all six model components.Extensions of Michaelis–Menten-based single resource grazingformulations to multiple resources resulted in periodic solutionsfor a large portion of the qh space. Conversely, extensionsof the sigmoidal grazing formulation to multiple resources resultedin steady solutions for a large portion of qh parameterspace. Our results demonstrate the consequences of the functionalform of biological processes on the form of the model solutions.Both the steady or oscillatory nature of state variable concentrationsand the likelihood of their elimination are important considerationsfor ecosystem-modelling studies, particularly when attemptingto model an ecosystem in which multiple phytoplankton and zooplanktoncomponents are thought to persist simultaneously for at leasta portion of the seasonal cycle.  相似文献   
115.
Improving stress tolerance and yield in crops are major goals for agriculture. Here, we show a new strategy to increase drought tolerance and yield in legumes by overexpressing trehalose-6-phosphate synthase in the symbiotic bacterium Rhizobium etli. Phaseolus vulgaris (common beans) plants inoculated with R. etli overexpressing trehalose-6-phosphate synthase gene had more nodules with increased nitrogenase activity and higher biomass compared with plants inoculated with wild-type R. etli. In contrast, plants inoculated with an R. etli mutant in trehalose-6-phosphate synthase gene had fewer nodules and less nitrogenase activity and biomass. Three-week-old plants subjected to drought stress fully recovered whereas plants inoculated with a wild-type or mutant strain wilted and died. The yield of bean plants inoculated with R. etli overexpressing trehalose-6-phosphate synthase gene and grown with constant irrigation increased more than 50%. Macroarray analysis of 7,200 expressed sequence tags from nodules of plants inoculated with the strain overexpressing trehalose-6-phosphate synthase gene revealed upregulation of genes involved in stress tolerance and carbon and nitrogen metabolism, suggesting a signaling mechanism for trehalose. Thus, trehalose metabolism in rhizobia is key for signaling plant growth, yield, and adaptation to abiotic stress, and its manipulation has a major agronomical impact on leguminous plants.  相似文献   
116.
The freshwater anomuran crabs of the family Aeglidae are all restricted to southern South America occurring in Chile, Brazil, Bolivia, Uruguay, Paraguay, and Argentina. The family consists of a single genus, Aegla, containing 63 currently described species. There are another 5–10 known yet undescribed species to complement this diversity. The aeglids occur in freshwater lakes, streams, rivers, and in caves with freshwater. The origin of the family appears to be from marine ancestors from the Pacific invading streams in Chile about 75 mya radiating both in Chile and again on the eastern side of the Andes, particularly in Brazil. Of the 63 species, 23 or 36.5% are considered under threat and are in need of conservation action. Guest editors: E. V. Balian, C. Lévêque, H. Segers & K. Martens Freshwater Animal Diversity Assessment  相似文献   
117.
118.
We describe a simple and highly effective means for global identification of genes that are expressed within specific cell types within complex tissues. It involves transgenic expression of nuclear-targeted green fluorescent protein in a cell-type-specific manner. The fluorescent nuclei are then purified from homogenates by fluorescence-activated sorting, and the RNAs employed as targets for microarray hybridization. We demonstrate the validity of the approach through the identification of 12 genes that are selectively expressed in phloem.  相似文献   
119.
Hydrotropism, the differential growth of plant roots directed by a moisture gradient, is a long recognized, but not well-understood plant behavior. Hydrotropism has been characterized in the model plant Arabidopsis. Previously, it was postulated that roots subjected to water stress are capable of undergo water-directed tropic growth independent of the gravity vector because of the loss of the starch granules in root cap columella cells and hence the loss of the early steps in gravitropic signaling. We have recently proposed that starch degradation in these cells during hydrostimulation sustain osmotic stress and root growth for carrying out hydrotropism instead of reducing gravity responsiveness. In addition, we also proposed that abscisic acid (ABA) and water deficit are critical regulators of root gravitropism and hydrotropism, and thus mediate the interacting mechanism between these two tropisms. Our conclusions are based upon experiments performed with the no hydrotropic response (nhr1) mutant of Arabidopsis, which lacks a hydrotropic response and shows a stronger gravitropic response than that of wild type (WT) in a medium with an osmotic gradient.Key words: starch, water deficit, auxin, abscisic acid, gravitropism, hydrotropismRoots of land plants sense and respond to different stimuli, some of which are fixed in direction and intensity (i.e., gravity) while other vary in time, space, direction and intensity (i.e., obstacles and moisture gradients). Directed growth of roots in relation to a gradient in moisture is called hydrotropism and begins in the root cap with the sensing of the moisture gradient. However, since gravity is an omnipresent accompaniment of Earthly life and many living process have evolved with it as a background constant, it is not surprising that root hydrotropism interacts with gravitropism.1 The hydrotropic response in Arabidopsis, compare with other plants such as pea and cucumber2,3 is readily observed even in the presence of gravity.4,5 When Arabidopsis roots are subjected to a water gradient, such that the source of water is placed 180° opposed to the gravity vector, the roots will grow upwards, displaying positive hydrotropism. Therefore, it has been feasible to isolate so far two Arabidopsis mutants affected in their hydrotropic response.5,6 Analysis of these mutants reveals new insights of the mechanism of hydrotropism. For one hand, the no hydrotropic response (nhr1) mutant lacks a hydrotropic response, and shows a stronger gravitropic response than that of wt and a modified wavy growth response in a medium with an osmotic gradient.5,7 On the other hand, the mizu-kussei1 (miz1) mutant did not exhibit hydrotropism and showed regular gravitropism.6 Hence, the root hydrotropic response is both linked and unlinked from the gravitropic one. Nonetheless, miz1 roots also showed a reduced phototropism and a modified wavy growth response. This indicates that both MIZ1 and NHR1 are not exclusive components of the mechanism for hydrotropism and supports the notion that the root cap has assessment mechanisms that integrate many different environmental influences to produce a final integrated response.8 Thus, the physiological phenomena distinctively displayed by roots in order to forage resources from the environment are the result of integrated responses that resulted from many environmental influences sensed in the root cap.In the course of studying how gravity and water availability affected the perception and assessment of each other in root cap cells that generated the final root tropic response, we found that ABA is a critical regulator of the signal transduction mechanism that integrated these two-root tropisms.7 For this, we analyzed the long-term hydrotropic response of Arabidopsis roots in an osmotic gradient system. ABA, locally applied to seeds or root tips of nhr1, significantly increased root downward growth in a medium with an osmotic gradient (root length of nhr1 seedlings grown in this medium were on average 12.5 mm and plus 10 µM ABA were 25.1 mm). On the other hand, WT roots germinated and treated locally with ABA in this system were strongly gravitropic, albeit they had almost no starch in amyloplasts of root cap columella cells. Hydrotropically stimulated nhr1 roots, with or without ABA, maintained starch in amyloplastas, as opposed to those of WT. Therefore, the near-absence (WT) or abundant presence (nhr1) of starch granules does not affect the extent of downward gravitropism of roots in an osmotic gradient medium. Starch degradation in the wt might participate in osmoregulation by which root cells maintain turgor and consequently carry out hydrotropism, instead of reducing gravity responsiveness. In fact, it was just recently published that salt-induced rapid degradation of starch in amyloplasts is not likely the main reason for a negative gravitropic response seen under salt stress, because sos mutant roots of Arabidopsis showed negative gravitropic growth without any apparent rapid digestion of starch granules.9 Additionally, the stems of overwintering tubers of Potamogeton pectinatus are capable of elongating much faster in the absence than in the presence of oxygen for up to 14 days and its stems has an enhanced capacity for gravitropic movements in completely anoxic conditions.10 These authors hypothesized that ABA and starch degradation in the starchy tuber sustained stem cell elongation and cell division as well as differential growth required for the gravitropic response in these aquatic plants. These data taken together suggest that in conditions of anoxia, or water stress, ABA and degradation of starch play a critical role in the ability to survive relatively prolonged periods of unfavorable growth conditions. These players are critical when water or minerals are scarce since they regulate the enhancement of root downward growth. However, since roots can trail humidity gradients in soil, they can modulate their branching patterns (architecture) and thus respond to hydrotropism once a water-rich patch is found. Then the response of plants to gravity is principally one of nutrition (shoots to light, roots to mineral and water) and consequently must be regulated according to the long- and short-term environmental variables that occur during the development of the plant.Differential growth that occurs during the gravitropic and phototropic response has been explained according to the Cholodny-Went hypothesis, which states that the lateral transport of auxin across stimulated plant tissues is responsible for the curvature response.11 Analysis of hydrotropism in some Arabidopsis agravitropic auxin transport mutants has demonstrated that these mutations do not influence their hydrotropic response.4 Furthermore, current pharmacological studies using inhibitors also indicated that both auxin influx and efflux are not required for hydrotropic response whereas auxin response is necessary for it.12 These authors suggested a novel mechanism for auxin in root hydrotropism. Here, we analyzed whether asymmetric auxin distribution takes place across hydrotropically-stimulated roots using transgenic plants carrying a responsive auxin promoter (DR5) driving the expression of β-glucuronidase (GUS) or green fluorescent protein (GFP)13,14 in wt and nhr1 backgrounds. Wt and nhr1 roots hydrotropically stimulated in a system with air moisture gradient5 showed no asymmetric expression of the DR5:: GUS or DR5::GFP (Fig. 1A and B). Nonetheless, nhr1 roots showed a substantial decrease in the signal driven by the DR5::GUS and GFP reporters in humidity saturated conditions (Fig. 1A, part b and B, part b), which might indicate that auxin-induced gene expression in the root cap was inhibited. It remains to be determined the significance of this inhibition in the no hydrotropic response phenotype displayed by nhr1 roots. Determination of the DR5::GUS expression in wt and nhr1 roots growing in an osmotic gradient medium for testing long-term hydrotropism revealed that the GUS signal was to some extent diminished in both wt or in nhr1 roots (Fig. 2C and D) compared to those roots growing in normal medium (Fig. 2A and B). An inhibitor of auxin response reduced hydrotropism,12 and also inhibited auxin-dependent DR5::GUS expression.15 However, a decrease of DR5::GUS in wt root tips was not an impediment for developing an hydrotropic response. On the other hand, nhr1 roots also showed a decrease of DR5::GUS expression (Fig. 2B and D) and a complete absence of DR5::GFP (data not shown), which did not influence the extent of downward root gravitropism in water deficit conditions. Therefore, it is difficult to assign a role of auxin-induce gene expression in hydrotropism and further studies are required in order to unravel this issue. Furthermore, it needs to be resolved whether these expression studies oppose the idea that gradients in auxin precede differential growth in response to humidity gradients.Open in a separate windowFigure 1DR5:: GUS (A) and DR5::GFP (B) activity in the wild type NHR1 and nhr1 backgrounds. (A) Root tips hydrostimulated in a system with air moisture gradient (C and D) or grown in a saturated water conditions (A and B) stained with 1 mM 5-bromo-4-chloro-3-indolyl-β-d-glucuronic (X-Gluc) acid buffer under the same conditions for 80 min. (B) Root tips hydrostimulated as in (A) (C and D) or grown in a saturated water conditions (A and B) whose green fluorescent signal was visualized by confocal microscopy. Shown are images selected from at least 45 representative root tips. Bar = 29 µm.Open in a separate windowFigure 2Expression of DR5::GUS in wild type NHR1 and nhr1 backgrounds. Roots were hydrotropically stimulated for 8 days in a medium with an osmotic gradient (C and D) or grown in normal medium (A and B) and stained with X-Gluc acid buffer under the same conditions for 80 min. Shown are images selected from at least 50 representative root tips. Bar = 25 µm.Our studies7 revealed that ABA is a critical regulator of both root gravitropism and hydrotropism in water deficit conditions, and that the role of auxin under these conditions seems to differ from those observed in several studies thus far published on gravitropism made under well-water conditions. The molecular characterization of NHR1 and from other nhr-like mutants already isolated in our lab will clarify the mechanisms involved in this fascinating tropism.16  相似文献   
120.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号