首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   883篇
  免费   63篇
  2023年   4篇
  2022年   15篇
  2021年   28篇
  2020年   13篇
  2019年   16篇
  2018年   25篇
  2017年   16篇
  2016年   31篇
  2015年   45篇
  2014年   52篇
  2013年   51篇
  2012年   83篇
  2011年   87篇
  2010年   53篇
  2009年   44篇
  2008年   52篇
  2007年   67篇
  2006年   57篇
  2005年   42篇
  2004年   32篇
  2003年   30篇
  2002年   28篇
  2001年   2篇
  2000年   5篇
  1999年   3篇
  1998年   3篇
  1997年   8篇
  1995年   2篇
  1993年   3篇
  1991年   2篇
  1990年   2篇
  1989年   2篇
  1988年   4篇
  1987年   3篇
  1986年   4篇
  1985年   3篇
  1984年   2篇
  1982年   4篇
  1981年   2篇
  1980年   2篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1968年   1篇
  1964年   2篇
  1961年   1篇
  1957年   1篇
  1936年   2篇
  1932年   1篇
  1931年   1篇
排序方式: 共有946条查询结果,搜索用时 843 毫秒
881.
882.
NCS1 proteins are H+ or Na+ symporters responsible for the uptake of purines, pyrimidines or related metabolites in bacteria, fungi and some plants. Fungal NCS1 are classified into two evolutionary and structurally distinct subfamilies, known as Fur‐ and Fcy‐like transporters. These subfamilies have expanded and functionally diversified by gene duplications. The Fur subfamily of the model fungus Aspergillus nidulans includes both major and cryptic transporters specific for uracil, 5‐fluorouracil, allantoin or/and uric acid. Here we functionally analyse all four A. nidulans Fcy transporters (FcyA, FcyC, FcyD and FcyE) with previously unknown function. Our analysis shows that FcyD is moderate‐affinity, low‐capacity, highly specific adenine transporter, whereas FcyE contributes to 8‐azaguanine uptake. Mutational analysis of FcyD, supported by homology modelling and substrate docking, shows that two variably conserved residues (Leu356 and Ser359) in transmembrane segment 8 (TMS8) are critical for transport kinetics and specificity differences among Fcy transporters, while two conserved residues (Phe167 and Ser171) in TMS3 are also important for function. Importantly, mutation S359N converts FcyD to a promiscuous nucleobase transporter capable of recognizing adenine, xanthine and several nucleobase analogues. Our results reveal the importance of specific residues in the functional evolution of NCS1 transporters.  相似文献   
883.
The critically endangered golden sun‐moth Synemon plana occurs in urban fringe areas of southeastern Australia that are currently experiencing rapid and extensive development. The urban fringe is a complex and uncertain environment in which to manage threatened species with the intersection of fragmented natural habitats, built environments and human populations generating novel, poorly understood interactions. In this context, management frameworks must incorporate ecological processes as well as social considerations. Here, we explore how biodiversity sensitive urban design might improve the fate of the golden sun‐moth, and threatened species generally, in urban fringe environments. We: (i) developed an expert‐informed Bayesian Belief Network model that synthesizes the current understanding of key determinants of golden sun‐moth population viability at sites experiencing urbanizing pressure; (ii) quantified the nature and strength of cause‐effect relationships between these factors using expert knowledge; and (iii) used the model to assess expectations of moth population viability in response to different combinations of management actions. We predict that adult survival, bare ground cover and cover of resource plants are the most important variables affecting the viability of golden sun‐moth populations. We also demonstrate the potential for biodiversity sensitive urban design as a complementary measure to conventional management for this species. Our findings highlight how expert knowledge may be a valuable component of conservation management, especially in addressing uncertainty around conservation decisions when empirical data are lacking, and how structured expert judgements become critical in supporting decisions that may help ameliorate extinction risks faced by threatened species in urban environments.  相似文献   
884.
Neuronal networks encode information through patterns of activity that define the networks’ function. The neurons’ activity relies on specific connectivity structures, yet the link between structure and function is not fully understood. Here, we tackle this structure-function problem with a new conceptual approach. Instead of manipulating the connectivity directly, we focus on upper triangular matrices, which represent the network dynamics in a given orthonormal basis obtained by the Schur decomposition. This abstraction allows us to independently manipulate the eigenspectrum and feedforward structures of a connectivity matrix. Using this method, we describe a diverse repertoire of non-normal transient amplification, and to complement the analysis of the dynamical regimes, we quantify the geometry of output trajectories through the effective rank of both the eigenvector and the dynamics matrices. Counter-intuitively, we find that shrinking the eigenspectrum’s imaginary distribution leads to highly amplifying regimes in linear and long-lasting dynamics in nonlinear networks. We also find a trade-off between amplification and dimensionality of neuronal dynamics, i.e., trajectories in neuronal state-space. Networks that can amplify a large number of orthogonal initial conditions produce neuronal trajectories that lie in the same subspace of the neuronal state-space. Finally, we examine networks of excitatory and inhibitory neurons. We find that the strength of global inhibition is directly linked with the amplitude of amplification, such that weakening inhibitory weights also decreases amplification, and that the eigenspectrum’s imaginary distribution grows with an increase in the ratio between excitatory-to-inhibitory and excitatory-to-excitatory connectivity strengths. Consequently, the strength of global inhibition reveals itself as a strong signature for amplification and a potential control mechanism to switch dynamical regimes. Our results shed a light on how biological networks, i.e., networks constrained by Dale’s law, may be optimised for specific dynamical regimes.  相似文献   
885.
Complement dysregulation has been documented in adults with COVID-19 and implicated in relevant pediatric inflammatory responses against SARS-CoV-2. We propose that signatures of complement missense coding SNPs associated with dysregulation could also be identified in children with multisystem inflammatory syndrome (MIS-C). We investigated 71 pediatric patients with RT-PCR validated SARS-CoV-2 hospitalized in pediatric COVID-19 care units (November 2020–March 2021) in three major groups. Seven (7) patients suffered from MIS-C (MIS-C group), 32 suffered from COVID-19 and were hospitalized (admitted group), whereas 32 suffered from COVID-19, but were sent home. All patients survived and were genotyped for variations in the C3, C5, CFB, CFD, CFH, CFHR1, CFI, CD46, CD55, MASP1, MASP2, MBL2, COLEC11, FCN1, and FCN3 genes. Upon evaluation of the missense coding SNP distribution patterns along the three study groups, we noticed similarities, but also considerably increased frequencies of the alternative pathway (AP) associated with SNPs rs12614 CFB, rs1061170, and rs1065489 CFH in the MIS-C patients. Our analysis suggests that the corresponding substitutions potentially reduce the C3b-inactivation efficiency and promote slower and weaker AP C3bBb pre-convertase assembly on virions. Under these circumstances, the complement AP opsonization capacity may be impaired, leading to compromised immune clearance and systemic inflammation in the MIS-C syndrome.  相似文献   
886.
The secreted clusterin/apolipoprotein J (CLU) protein form is a ubiquitously expressed heterodimeric glycoprotein which is differentially regulated in many severe physiological disturbance states including cell death, ageing, cancer progression, and various neurological diseases. Despite extensive efforts CLU function remains an enigma, the main cause being the intriguingly distinct and usually opposed functions in various cell types and tissues. In the current report we investigated the effects of CLU on cellular growth and survival in three human osteosarcoma (OS) cell lines, namely KH OS, Sa OS, and U-2 OS that express very low, moderate, and high endogenous steady-state CLU amounts, respectively. We found that exposure of these established OS cell lines or primary OS cells to genotoxic stress results in CLU gene induction at distinct levels that correlate negatively to CLU endogenous amounts. Following CLU-forced overexpression by means of an artificial transgene, we found that although extracellular CLU inhibits cell death in all three OS cell lines, intracellular CLU has different effects on cellular proliferation and survival in these cell lines. Transgenic KH OS cell lines adapted to moderate intracellular CLU levels were growth-retarded and became resistant to genotoxic and oxidative stress. In contrast, transgenic Sa OS and U2 OS cell lines adapted to high intracellular CLU amounts were sensitive to genotoxic and oxidative stress. In these two cell lines, the proapoptotic CLU function could be rescued by caspase inhibition. To monitor the immediate effects of heterologous CLU overexpression prior to cell adaptation, we performed transient transfections in all three OS cell lines. We found that induction of high intracellular CLU amounts increases spontaneous apoptosis in KH OS cells and reduces DNA synthesis in all three cell lines assayed. On the basis of these novel findings we propose that although extracellular CLU as well as intracellular CLU at low/moderate levels is cytoprotective, CLU may become highly cytostatic and/or cytotoxic if it accumulates intracellularly in high amounts either by direct synthesis or by uptake from the extracellular milieu.  相似文献   
887.
The majority of species in ecosystems are rare, but the ecosystem consequences of losing rare species are poorly known. To understand how rare species may influence ecosystem functioning, this study quantifies the contribution of species based on their relative level of rarity to community functional diversity using a trait‐based approach. Given that rarity can be defined in several different ways, we use four different definitions of rarity: abundance (mean and maximum), geographic range, and habitat specificity. We find that rarer species contribute to functional diversity when rarity is defined by maximum abundance, geographic range, and habitat specificity. However, rarer species are functionally redundant when rarity is defined by mean abundance. Furthermore, when using abundance‐weighted analyses, we find that rare species typically contribute significantly less to functional diversity than common species due to their low abundances. These results suggest that rare species have the potential to play an important role in ecosystem functioning, either by offering novel contributions to functional diversity or via functional redundancy depending on how rare species are defined. Yet, these contributions are likely to be greatest if the abundance of rare species increases due to environmental change. We argue that given the paucity of data on rare species, understanding the contribution of rare species to community functional diversity is an important first step to understanding the potential role of rare species in ecosystem functioning.  相似文献   
888.
DNA lesions trigger the DNA damage response (DDR) machinery, which protects genomic integrity and sustains cellular survival. Increasing data underline the significance of the integrity of the DDR pathway in chemotherapy response. According to a recent work, persistent exposure of A549 lung carcinoma cells to doxorubicin induces an initial DDR‐dependent checkpoint response, followed by a later DDR‐independent, but p27Kip1‐dependent one. Prompted by the above report and to better understand the involvement of the DDR signaling after chemotherapeutic stress, we examined the potential role of the canonical DDR pathway in A549 cells treated with doxorubicin. Exposure of A549 cells, prior to doxorubicin treatment, to ATM, ATR and DNA‐PKcs inhibitors either alone or in various combinations, revealed that the earlier documented two‐step response was DDR‐dependent in both steps. Notably, inhibition of both ATM and ATR or selective inhibition of ATM or DNA‐PKcs resulted in cell‐cycle re‐entry despite the increased levels of p27Kip1 at all time points analyzed. We further investigated the regulation of p27Kip1 protein levels in the particular setting. Our results showed that the protein status of p27Kip1 is mainly determined by p38‐MAPK, whereas the role of SKP2 is less significant in the doxoroubicin‐treated A549 cells. Cumulatively, we provide evidence that the DNA damage signaling is responsible for the prolonged cell cycle arrest observed after persistent chemotherapy‐induced genotoxic stress. In conclusion, precise identification of the molecular mechanisms that are activated during the chemotherapeutic cycles could potentially increase the sensitization to the therapy applied.  相似文献   
889.
Most European forests are managed by humans. However, the manner and intensity of management vary. While the effect of forest management on above-ground communities has been investigated in detail, effects on the below-ground fauna remain poorly understood. Oribatid mites are abundant microarthropods in forest soil and important decomposers in terrestrial ecosystems. Here, we investigated the effect of four forest types (i.e., managed coniferous forests; 30 and 70 years old managed beech forests; natural beech forests) on the density, diversity and community structure of oribatid mites (Acari). The study was replicated at three regions in Germany: the Swabian Alb, the Hainich and the Schorfheide. To relate changes in oribatid mite community structure to environmental factors, litter mass, pH, C and N content of litter, fine roots and C content of soil were measured. Density of oribatid mites was highest in the coniferous forests and decreased in the order 30 years old, 70 years old, and natural beech forests. Mass of the litter layer and density of oribatid mites were strongly correlated indicating that the litter layer is an important factor regulating oribatid mite densities. Diversity of oribatid mites was little affected by forest type indicating that they harbor similar numbers of niches. Species composition differed between the forest types, suggesting different types of niches. The community structure of oribatid mites differed more strongly between the three regions than between the forest types indicating that regional factors are more important than effects associated with forest type.  相似文献   
890.
Powassan virus (POWV) is an emerging tick borne flavivirus (TBFV) that causes severe neuroinvasive disease. Currently, there are no approved treatments or vaccines to combat POWV infection. Here, we generated and characterized a nanoparticle immunogen displaying domain III (EDIII) of the POWV E glycoprotein. Immunization with POWV EDIII presented on nanoparticles resulted in significantly higher serum neutralizing titers against POWV than immunization with monomeric POWV EDIII. Furthermore, passive transfer of EDIII-reactive sera protected against POWV challenge in vivo. We isolated and characterized a panel of EDIII-specific monoclonal antibodies (mAbs) and identified several that potently inhibit POWV infection and engage distinct epitopes within the lateral ridge and C-C′ loop of the EDIII. By creating a subunit-based nanoparticle immunogen with vaccine potential that elicits antibodies with protective activity against POWV infection, our findings enhance our understanding of the molecular determinants of antibody-mediated neutralization of TBFVs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号