首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1087篇
  免费   104篇
  2023年   4篇
  2022年   18篇
  2021年   28篇
  2020年   14篇
  2019年   18篇
  2018年   28篇
  2017年   23篇
  2016年   35篇
  2015年   51篇
  2014年   64篇
  2013年   59篇
  2012年   101篇
  2011年   99篇
  2010年   66篇
  2009年   46篇
  2008年   62篇
  2007年   76篇
  2006年   70篇
  2005年   50篇
  2004年   43篇
  2003年   38篇
  2002年   37篇
  2001年   14篇
  2000年   13篇
  1999年   10篇
  1998年   7篇
  1997年   9篇
  1996年   4篇
  1995年   5篇
  1994年   3篇
  1993年   5篇
  1992年   4篇
  1991年   4篇
  1990年   4篇
  1989年   10篇
  1988年   9篇
  1987年   7篇
  1986年   8篇
  1985年   3篇
  1984年   3篇
  1983年   3篇
  1982年   4篇
  1979年   2篇
  1978年   2篇
  1977年   4篇
  1973年   3篇
  1972年   2篇
  1970年   2篇
  1964年   2篇
  1936年   2篇
排序方式: 共有1191条查询结果,搜索用时 15 毫秒
191.
The skeleton is one of the most important features for the reconstruction of vertebrate phylogeny but few data are available to understand its molecular origin. In mammals the Runt genes are central regulators of skeletogenesis. Runx2 was shown to be essential for osteoblast differentiation, tooth development, and bone formation. Both Runx2 and Runx3 are essential for chondrocyte maturation. Furthermore, Runx2 directly regulates Indian hedgehog expression, a master coordinator of skeletal development. To clarify the correlation of Runt gene evolution and the emergence of cartilage and bone in vertebrates, we cloned the Runt genes from hagfish as representative of jawless fish (MgRunxA, MgRunxB) and from dogfish as representative of jawed cartilaginous fish (ScRunx1–3). According to our phylogenetic reconstruction the stem species of chordates harboured a single Runt gene and thereafter Runt locus duplications occurred during early vertebrate evolution. All newly isolated Runt genes were expressed in cartilage according to quantitative PCR. In situ hybridisation confirmed high MgRunxA expression in hard cartilage of hagfish. In dogfish ScRunx2 and ScRunx3 were expressed in embryonal cartilage whereas all three Runt genes were detected in teeth and placoid scales. In cephalochordates (lancelets) Runt, Hedgehog and SoxE were strongly expressed in the gill bars and expression of Runt and Hedgehog was found in endo- as well as ectodermal cells. Furthermore we demonstrate that the lancelet Runt protein binds to Runt binding sites in the lancelet Hedgehog promoter and regulates its activity. Together, these results suggest that Runt and Hedgehog were part of a core gene network for cartilage formation, which was already active in the gill bars of the common ancestor of cephalochordates and vertebrates and diversified after Runt duplications had occurred during vertebrate evolution. The similarities in expression patterns of Runt genes support the view that teeth and placoid scales evolved from a homologous developmental module.  相似文献   
192.
Regulatory mechanisms in mucosal secretions and tissues recognize antigens and attenuate pro-inflammatory cytokine responses. Here, we asked whether human beta-defensin 3 (HBD3) serves as an upstream suppressor of cytokine signaling that binds and attenuates pro-inflammatory cytokine responses to recombinant hemagglutinin B (rHagB), a non-fimbrial adhesin from Porphyromonas gingivalis strain 381. We found that HBD3 binds to immobilized rHagB and produces a significantly higher resonance unit signal in surface plasmon resonance spectroscopic analysis, than HBD2 and HBD1 that are used as control defensins. Furthermore, we found that HBD3 significantly attenuates (P<0.05) the interleukin (IL)-6, IL-10, granulocyte macrophage colony stimulating factor (GM-CSF) and tumor-necrosis factor-alpha (TNF-alpha) responses induced by rHagB in human myeloid dendritic cell culture supernatants and the extracellular signal-regulated kinases (ERK 1/2) response in human myeloid dendritic cell lysates. Thus, HBD3 binds rHagB and this interaction may be an important initial step to attenuate a pro-inflammatory cytokine response and an ERK 1/2 response.  相似文献   
193.
Large herbivores can affect vegetation structure and species composition as well as material and energy flows in the ecosystem through their selective feeding, defecation, urination and trampling. These changes have a large potential to indirectly affect other trophic levels, but the mechanisms are poorly known. We studied the impacts of moose Alces alces browsing along a gradient of site productivity by experimentally simulating four different moose densities. Here we show that moose can affect the richness and abundance of three trophic levels in Swedish boreal forests through complex direct and indirect impacts, but in qualitatively different ways depending on how the physical habitat or food resources of a trophic level are affected. Vegetation richness had a hump‐shaped (unimodal) response to increased moose density. Leaf litter production decreased when browsing increased, which in turn depressed the abundance of flying prey for spiders. Consequently, spider abundance and richness declined monotonically. The responses of spider richness to moose density were further conditioned by site productivity: the response was positive at productive and negative at unproductive sites. In contrast, herbivorous Hemiptera were not affected by moose, most likely because the abundance of their food plants was not affected. The highest simulated moose density had an impact on all variables responding to moose even after a few years of treatment and can be considered as overabundance. We also show that the impacts of low or moderate moose density can be positive to some of the organisms negatively affected by high density. The level of herbivore population density that leads to substantial community impacts also depends on site factors, such as productivity.  相似文献   
194.
195.
This study focuses on the exploitation of cheese whey as a source for hydrogen and methane, in a two-stage continuous process. Mesophilic fermentative hydrogen production from undiluted cheese whey was investigated at a hydraulic retention time (HRT) of 24 h. Alkalinity addition (NaHCO3) or an automatic pH controller were used, to maintain the pH culture at a constant value of 5.2. The hydrogen production rate was 2.9 ± 0.2 L/Lreactor/d, while the yield of hydrogen produced was approximately 0.78 ± 0.05 mol H2/mol glucose consumed, with alkalinity addition, while the respective values when using pH control were 1.9 ± 0.1 L/Lreactor/d and 0.61 ± 0.04 mol H2/mol glucose consumed. The corresponding yields of hydrogen produced were 2.9 L of H2/L cheese whey and 1.9 L of H2/L cheese whey, respectively. The effluent from the hydrogenogenic reactor was further digested to biogas in a continuous mesophilic anaerobic bioreactor. The anaerobic digester was operated at an HRT of 20d and produced approximately 1 L CH4/d, corresponding to a yield of 6.7 L CH4/L of influent. The chemical oxygen demand (COD) elimination reached 95.3% demonstrating that cheese whey could be efficiently used for hydrogen and methane production, in a two-stage process.  相似文献   
196.
NMR spectroscopy, X-ray crystallography, and molecular modeling studies indicate that N,N-disubstituted-1,4-diazepane orexin receptor antagonists exist in an unexpected low-energy conformation that is characterized by an intramolecular π-stacking interaction and a twist-boat ring conformation. Synthesis and evaluation of a macrocycle that enforces a similar conformation suggest that this geometry mimics the bioactive conformation.  相似文献   
197.
The Chemotaxis Inhibitory Protein of Staphylococcus aureus (CHIPS) binds and blocks the C5a receptor (C5aR) and formyl-peptide receptor (FPR). This way, CHIPS is a potent inhibitor of the immune cell recruitment associated with inflammation. Truncation of the protein and the introduction of mutations, shifts the expression towards the insoluble fraction of Escherichia coli, whereas the wild-type protein can be solubly expressed. A protocol for expression and tag independent purification of biologically active CHIPS variants has been established to enable further characterization of an improved CHIPS variant, called ADC-1004. The CHIPS variants were purified by washing of E. coli inclusion bodies followed by refolding and gel filtration. New techniques were utilized to optimize the purification process. Expression in inclusion bodies was increased by the use of Ultra Yield flasks and optimal refolding conditions were determined by the use of the iFOLD Refolding System 2.The folding and biological activity of the purified proteins were analyzed by circular dichroism (CD) spectroscopy and flow cytometry, respectively, and compared to solubly produced CHIPS31–113 and wild-type CHIPS1–121. We show that the CHIPS variants produced in inclusion bodies can be refolded and purified to achieve equal biological activity as solubly produced CHIPS31–113 and wild-type CHIPS1–121. The truncation causes minor structural changes while purification from inclusion bodies or the soluble fraction does not further affect the structure.  相似文献   
198.
199.
200.
Abstract  Bottlenecks in expression, solubilization, purification and crystallization hamper the structural study of integral membrane proteins (IMPs). Successful crystallization is critically dependent on the purity, stability and oligomeric homogeneity of an IMP sample. These characteristics are in turn strongly influenced by the type and concentration of the detergents used in IMP preparation. By utilizing the techniques and analytical tools we earlier developed for the characterization of protein-detergent complexes (PDCs) [21], we demonstrate that for successful protein extraction from E. coli membrane fractions, the solubilizing detergent associates preferentially to IMPs rather than to membrane lipids. Notably, this result is contrary to the generally accepted mechanism of detergent-mediated IMP solubilization. We find that for one particular member of the family of proteins studied (E. coli receptor kinases, which is purified in mixed multimeric states and oligomerizes through its transmembrane region), the protein oligomeric composition is largely unaffected by a 10-fold increase in protein concentration, by alteration of micelle properties through addition of other detergents to the PDC sample, or by a 20-fold variation in the detergent concentration used for solubilization of the IMP from the membrane. We observed that the conditions used for expression of the IMP, which impact protein density in the membrane, has the greatest influence on the IMP oligomeric structure. Finally, we argue that for concentrating PDCs smaller than 30 kDa, stirred concentration cells are less prone to over-concentration of detergent and are therefore more effective than centrifugal ultrafiltration devices.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号