全文获取类型
收费全文 | 28296篇 |
免费 | 2665篇 |
国内免费 | 65篇 |
专业分类
31026篇 |
出版年
2022年 | 195篇 |
2021年 | 319篇 |
2020年 | 202篇 |
2019年 | 286篇 |
2018年 | 332篇 |
2017年 | 284篇 |
2016年 | 461篇 |
2015年 | 865篇 |
2014年 | 911篇 |
2013年 | 1304篇 |
2012年 | 1521篇 |
2011年 | 1574篇 |
2010年 | 947篇 |
2009年 | 888篇 |
2008年 | 1406篇 |
2007年 | 1491篇 |
2006年 | 1350篇 |
2005年 | 1338篇 |
2004年 | 1266篇 |
2003年 | 1232篇 |
2002年 | 1229篇 |
2001年 | 416篇 |
2000年 | 376篇 |
1999年 | 423篇 |
1998年 | 366篇 |
1997年 | 289篇 |
1996年 | 294篇 |
1995年 | 269篇 |
1994年 | 274篇 |
1993年 | 249篇 |
1992年 | 290篇 |
1991年 | 299篇 |
1990年 | 253篇 |
1989年 | 273篇 |
1988年 | 303篇 |
1987年 | 254篇 |
1986年 | 237篇 |
1985年 | 285篇 |
1984年 | 337篇 |
1983年 | 279篇 |
1982年 | 299篇 |
1981年 | 327篇 |
1980年 | 277篇 |
1979年 | 251篇 |
1978年 | 271篇 |
1977年 | 239篇 |
1976年 | 211篇 |
1975年 | 203篇 |
1974年 | 250篇 |
1973年 | 242篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
931.
Ascorbate (AsA) plays a fundamental role in redox homeostasis in plants and animals, primarily by scavenging reactive oxygen
species. Three genes, representing diverse steps putatively involved in plant AsA biosynthesis pathways, were cloned and independently
expressed in Solanum lycopersicum (tomato) under the control of the CaMV 35S promoter. Yeast-derived GDP-mannose pyrophosphorylase (GMPase) and arabinono-1,4-lactone oxidase (ALO), as well as myo-inositol oxygenase 2 (MIOX2) from Arabidopsis thaliana, were targeted. Increases in GMPase activity were concomitant with increased AsA levels of up to 70% in leaves, 50% in green
fruit, and 35% in red fruit. Expression of ALO significantly pulled biosynthetic flux towards AsA in leaves and green fruit by up to 54 and 25%, respectively. Changes in
AsA content in plants transcribing the MIOX2 gene were inconsistent in different tissue. On the other hand, MIOX activity was strongly correlated with cell wall uronic
acid levels, suggesting that MIOX may be a useful tool for the manipulation of cell wall composition. In conclusion, the Smirnoff–Wheeler
pathway showed great promise as a target for biotechnological manipulation of ascorbate levels in tomato. 相似文献
932.
George H. Caughey Thomas H. Schaumberg Edward H. Zerweck Joseph H. Butterfield Robin D. Hanson Gary A. Silverman Timothy J. Ley 《Genomics》1993,15(3)
Genes encoding T-cell-receptor α/δ chains, neutrophil cathepsin G, and lymphocyte CGL/granzymes are closely linked on chromosomal band 14q11.2. The current work identifies the human mast cell chymase gene (CMA1) as the fourth protease in this cluster and maps the gene to within 150 kb of the cathepsin G gene. The gene order is centromere-T cell receptor α/δ-CGL-1/granzyme B-CGL-2/granzyme H-cathepsin G-chymase. Chymase and cathepsin G genes are shown to be cotranscribed in the human mast cell line HMC-1 and in U-937 cells. Other cells transcribe cathepsin G or CGL/granzyme genes, but not chymase genes, suggesting a capacity for independent regulation. Comparison of the 5′ flank of the chymase gene with those of cathepsin G and CGL/granzymes reveals little overall homology. Only short regions of the 5′ flanks of the human and murine chymase genes sequenced to date are similar, suggesting that they are more distantly related than human and rodent CGL-1/granzyme B, the flanks of which are highly homologous. The expression patterns and clustering of genes provide possible clues to the presence of locus control regions that orchestrate lineage-restricted expression of leukocyte and mast cell proteases. 相似文献
933.
934.
Co-administration of Selenium with Inorganic Mercury Alters the Disposition of Mercuric Ions in Rats
Orr Sarah E. George Hannah S. Barnes Mary C. Mathis Taylor N. Joshee Lucy Barkin Jennifer Kiefer Adam M. Seney Caryn S. Bridges Christy C. 《Biological trace element research》2020,195(1):187-195
Biological Trace Element Research - Mercury (Hg) is a common environmental toxicant to which humans are exposed regularly through occupational and dietary means. Although selenium supplementation... 相似文献
935.
Konstantin V. Salojin Brian D. Hamman Wei Chun Chang Kanchan G. Jhaver Amin Al-Shami Jeannette Crisostomo Carrie Wilkins Ann Marie Digeorge-Foushee Jason Allen Nita Patel Suma Gopinathan Julia Zhou Amr Nouraldeen Theodore C. Jessop Jeffrey T. Bagdanoff David J. Augeri Robert Read Peter Vogel Jonathan Swaffield Alan Wilson Kenneth A. Platt Kenneth G. Carson Alan Main Brian P. Zambrowicz Tamas Oravecz 《PloS one》2014,9(5)
Mammalian sterile 20-like kinase 1 (Mst1) is a MAPK kinase kinase kinase which is involved in a wide range of cellular responses, including apoptosis, lymphocyte adhesion and trafficking. The contribution of Mst1 to Ag-specific immune responses and autoimmunity has not been well defined. In this study, we provide evidence for the essential role of Mst1 in T cell differentiation and autoimmunity, using both genetic and pharmacologic approaches. Absence of Mst1 in mice reduced T cell proliferation and IL-2 production in vitro, blocked cell cycle progression, and elevated activation-induced cell death in Th1 cells. Mst1 deficiency led to a CD4+ T cell development path that was biased toward Th2 and immunoregulatory cytokine production with suppressed Th1 responses. In addition, Mst1−/− B cells showed decreased stimulation to B cell mitogens in vitro and deficient Ag-specific Ig production in vivo. Consistent with altered lymphocyte function, deletion of Mst1 reduced the severity of experimental autoimmune encephalomyelitis (EAE) and protected against collagen-induced arthritis development. Mst1−/− CD4+ T cells displayed an intrinsic defect in their ability to respond to encephalitogenic antigens and deletion of Mst1 in the CD4+ T cell compartment was sufficient to alleviate CNS inflammation during EAE. These findings have prompted the discovery of novel compounds that are potent inhibitors of Mst1 and exhibit desirable pharmacokinetic properties. In conclusion, this report implicates Mst1 as a critical regulator of adaptive immune responses, Th1/Th2-dependent cytokine production, and as a potential therapeutic target for immune disorders. 相似文献
936.
Michael Krützen Sina Kreicker Colin D. MacLeod Jennifer Learmonth Anna M. Kopps Pamela Walsham Simon J. Allen 《Proceedings. Biological sciences / The Royal Society》2014,281(1784)
Culturally transmitted tool use has important ecological and evolutionary consequences and has been proposed as a significant driver of human evolution. Such evidence is still scarce in other animals. In cetaceans, tool use has been inferred using indirect evidence in one population of Indo-Pacific bottlenose dolphins (Tursiops sp.), where particular dolphins (‘spongers’) use marine sponges during foraging. To date, evidence of whether this foraging tactic actually provides access to novel food items is lacking. We used fatty acid (FA) signature analysis to identify dietary differences between spongers and non-spongers, analysing data from 11 spongers and 27 non-spongers from two different study sites. Both univariate and multivariate analyses revealed significant differences in FA profiles between spongers and non-spongers between and within study sites. Moreover, FA profiles differed significantly between spongers and non-spongers foraging within the same deep channel habitat, whereas the profiles of non-spongers from deep channel and shallow habitats at this site could not be distinguished. Our results indicate that sponge use by bottlenose dolphins is linked to significant differences in diet. It appears that cultural transmission of tool use in dolphins, as in humans, allows the exploitation of an otherwise unused niche. 相似文献
937.
Jonathan S. Griffiths Allen Yi-Lun Tsai Hui Xue C?t?lin Voiniciuc Kre?imir ?ola Georg J. Seifert Shawn D. Mansfield George W. Haughn 《Plant physiology》2014,165(3):991-1004
Interactions between cell wall polymers are critical for establishing cell wall integrity and cell-cell adhesion. Here, we exploit the Arabidopsis (Arabidopsis thaliana) seed coat mucilage system to examine cell wall polymer interactions. On hydration, seeds release an adherent mucilage layer strongly attached to the seed in addition to a nonadherent layer that can be removed by gentle agitation. Rhamnogalacturonan I (RG I) is the primary component of adherent mucilage, with homogalacturonan, cellulose, and xyloglucan constituting minor components. Adherent mucilage contains rays composed of cellulose and pectin that extend above the center of each epidermal cell. CELLULOSE SYNTHASE5 (CESA5) and the arabinogalactan protein SALT-OVERLY SENSITIVE5 (SOS5) are required for mucilage adherence through unknown mechanisms. SOS5 has been suggested to mediate adherence by influencing cellulose biosynthesis. We, therefore, investigated the relationship between SOS5 and CESA5. cesa5-1 seeds show reduced cellulose, RG I, and ray size in adherent mucilage. In contrast, sos5-2 seeds have wild-type levels of cellulose but completely lack adherent RG I and rays. Thus, relative to each other, cesa5-1 has a greater effect on cellulose, whereas sos5-2 mainly affects pectin. The double mutant cesa5-1 sos5-2 has a much more severe loss of mucilage adherence, suggesting that SOS5 and CESA5 function independently. Double-mutant analyses with mutations in MUCILAGE MODIFIED2 and FLYING SAUCER1 that reduce mucilage release through pectin modification suggest that only SOS5 influences pectin-mediated adherence. Together, these findings suggest that SOS5 mediates adherence through pectins and does so independently of but in concert with cellulose synthesized by CESA5.Cellulosic cell walls are a defining feature of land plants. Primary cell walls are composed of three major classes of polysaccharides: cellulose, hemicelluloses, and pectins. In addition, approximately 10% of the primary cell wall is composed of protein (Burton et al., 2010). Cell walls provide mechanical support for the cell, and cell wall carbohydrates in the middle lamellae mediate cell-cell adhesion (Caffall and Mohnen, 2009). Current models of cell wall structure depict a cellulose-hemicellulose network embedded in an independent pectin gel (for review, see Albersheim et al., 2011). These components are believed to interact through both covalent and noncovalent bonds to provide structure and strength to the cell wall, although the relative importance of pectin and its interactions with the hemicellulose-cellulose network remain unclear (for review, see Cosgrove, 2005).Another gap in our understanding of cell wall structure and assembly is the role of arabinogalactan proteins (AGPs). AGPs are a family of evolutionarily conserved secreted proteins highly glycosylated with type II arabinogalactans, and they can be localized to the plasma membrane by a C-terminal glycophosphatidylinositol (GPI) lipid anchor (for review, see Schultz et al., 2000; Showalter, 2001; Johnson et al., 2003; Seifert and Roberts, 2007; Ellis et al., 2010). AGPs can be extensively modified in the cell wall; many glycosyl hydrolases can affect AGP function by cleaving their glycosyl side chains (Sekimata et al., 1989; Cheung et al., 1995; Wu et al., 1995; Kotake et al., 2005). The GPI anchor can also be cleaved, releasing the AGPs from the membrane into the cell wall (Schultz et al., 2000). Although their exact roles are still unclear, AGPs have been proposed to interact with cell wall polysaccharides, initiate intracellular signaling cascades, and influence a wide variety of biological processes (for review, see Seifert and Roberts, 2007; Ellis et al., 2010; Tan et al., 2013).Many fasciclin-like AGPs (FLAs), which contain at least one fasciclin domain (FAS) associated with protein-protein interactions, have been suggested to influence cellulose biosynthesis or organization (Seifert and Roberts, 2007; Li et al., 2010; MacMillan et al., 2010). FLA3 RNA interference lines have reduced intine cell wall biosynthesis and loss of Calcofluor white (a fluorescent dye specific for glycan molecules) staining in aborted pollen grains (Li et al., 2010). A fla11 fla12 double mutant was shown to have reduced cellulose deposition, altered cellulose microfibril angle, and reduced cell wall integrity (MacMillan et al., 2010). The fla11 fla12 double mutant also had reductions in arabinans, galactans, and rhamnose (MacMillan et al., 2010). FLA4/SALT-OVERLY SENSITIVE5 (SOS5) was identified in a screen for salt sensitivity in roots. The SOS5 gene encodes an FLA protein with a GPI anchor, two AGP-like domains, and two FAS domains (Shi et al., 2003). Plants homozygous for the loss-of-function conditional allele sos5-1 have thinner root cell walls that appear less organized (Shi et al., 2003). The presence of the two FAS domains has led to the suggestion that SOS5 may interact with other proteins, forming a network that strengthens the cell wall (Shi et al., 2003). SOS5 is involved in regulation of cell wall rheology through a pathway involving two Leu-rich repeat receptor-like kinases, FEI1 and FEI2 (Xu et al., 2008). SOS5 and FEI2 are also required for normal seed coat mucilage adherence and hypothesized to do so by influencing cellulose biosynthesis (Harpaz-Saad et al., 2011, 2012).Arabidopsis (Arabidopsis thaliana) seed coat mucilage is a powerful model for studying cell wall biosynthesis and polysaccharide interactions (Arsovski et al., 2010; Haughn and Western, 2012). Seed coat epidermal cells sequentially produce two distinct types of secondary cell walls with unique morphologies and properties (Western et al., 2000; Windsor et al., 2000). Between approximately 5 and 9 d approximate time of fertilization (DPA), seed coat epidermal cells synthesize mucilage and deposit it in the apoplast, creating a donut-shaped mucilage pocket that surrounds a central cytoplasmic column (Western et al., 2000, 2004; Haughn and Chaudhury, 2005). From 9 to 13 DPA, the cytoplasmic column is gradually replaced by a cellulose-rich, volcano-shaped secondary cell wall called the columella (Beeckman et al., 2000; Western et al., 2000; Windsor et al., 2000; Stork et al., 2010; Mendu et al., 2011).Seed mucilage is composed primarily of relatively unbranched rhamnogalacturonan I (RG I) with minor amounts of homogalacturonan (HG), cellulose, and hemicelluloses (for review, see Haughn and Western, 2012). When mucilage is hydrated, it expands rapidly from the apoplastic pocket, forming a halo that surrounds the seed. Mucilage separates into two fractions: a loose nonadherent fraction and an inner adherent fraction that can only be released by vigorous shaking, strong bases, or glycosidases (for review, see North et al., 2014). Galactans and arabinans are also present in mucilage, and their regulation by glycosidases is required for correct mucilage hydration (Dean et al., 2007; Macquet et al., 2007b; Arsovski et al., 2009). For example, β-XYLOSIDASE1 encodes a bifunctional β-d-xylosidase/α-l-arabinofuranosidase required for arabinan modification in mucilage, and β-xylosidase1 mutant seeds have a delayed mucilage release phenotype (Arsovski et al., 2009). MUCILAGE MODIFIED2 (MUM2) encodes a β-d-galactosidase, and mum2 seeds fail to release mucilage when hydrated in water (Dean et al., 2007; Macquet et al., 2007b). MUM2 is believed to modify RG I galactan side chains but may also affect the galactan component of other mucilage components (Dean et al., 2007; Macquet et al., 2007b). Galactans are capable of binding to cellulose in vitro and could affect mucilage hydration through pectin-cellulose interactions (Zykwinska et al., 2005, 2007a, 2007b; Dick-Pérez et al., 2011; Wang et al., 2012), although carbohydrate linkage analysis suggests that the galactan side chains are very short.Several studies indicate that seed mucilage extrusion and expansion are also influenced by methylesterification of HG. For example, both SUBTILISIN-LIKE SER PROTEASE1.7 and PECTIN METHYLESTERASE INHIBITOR6 are required for proper methyl esterification of mucilage (Rautengarten et al., 2008; Saez-Aguayo et al., 2013). Mutations in another gene, FLYING SAUCER1 (FLY1; a transmembrane E3 ubiquitin ligase), reduce the degree of pectin methylesterification in mucilage and cause increased mucilage adherence and defective mucilage extrusion (Voiniciuc et al., 2013). fly1 seeds have disc-like structures at the edge of the mucilage halo, which are outer primary cell wall fragments that detach from the columella during extrusion and are difficult to separate from the adherent mucilage (Voiniciuc et al., 2013).Recently, CELLULOSE SYNTHASE5 (CESA5) and SOS5 were proposed to facilitate cellulose-mediated mucilage adherence (Harpaz-Saad et al., 2011; Mendu et al., 2011; Sullivan et al., 2011). A simple hypothesis for the role of CESA5 in mucilage adherence is that it synthesizes cellulose, which interacts with the mucilage pectin to mediate adherence. Loss of CESA5 function results in a reduction of mucilage cellulose biosynthesis and a less adherent mucilage cell wall matrix (Mendu et al., 2011; Sullivan et al., 2011). The role of SOS5 in mucilage adherence is more difficult to explain. SOS5 null mutations cause a loss-of-adherence phenotype similar to cesa5-1 seeds, suggesting that SOS5 may regulate mucilage adherence by influencing CESA5 function (Harpaz-Saad et al., 2011). However, the mechanism through which SOS5 could influence CESA5 and/or cellulose biosynthesis is not clear.To better understand the role of SOS5 in mucilage adherence and its relationship to CESA5, we thoroughly investigated the seed coat epidermal cell phenotypes of the cesa5-1 and sos5-2 single mutants as well as those of the cesa5-1 sos5-2 double mutant. We also investigated how cellulose, SOS5, and pectin interact to mediate mucilage adherence by constructing double mutants with either cesa5-1 or sos5-2 together with either mum2-1 or fly1. Our results suggest that SOS5 mediates mucilage adherence independently of CESA5. Furthermore, compared with CESA5, SOS5 has a greater influence on mucilage pectin structure, suggesting that SOS5 mediates mucilage adherence through pectins, not cellulose. 相似文献
938.
Acute myeloid leukaemia (AML) is an uncontrolled clonal proliferation of abnormal myeloid progenitor cells in the bone marrow and blood. Advances in cancer genomics have revealed the spectrum of somatic mutations that give rise to human AML and drawn our attention to its molecular evolution and clonal architecture. It is now evident that most AML genomes harbour small numbers of mutations, which are acquired in a stepwise manner. This characteristic, combined with our ability to identify mutations in individual leukaemic cells and our detailed understanding of normal human and murine haematopoiesis, makes AML an excellent model for understanding the principles of cancer evolution. Furthermore, a better understanding of how AML evolves can help us devise strategies to improve the therapy and prognosis of AML patients. Here, we draw from recent advances in genomics, clinical studies and experimental models to describe the current knowledge of the clonal evolution of AML and its implications for the biology and treatment of leukaemias and other cancers.KEY WORDS: Acute myeloid leukaemia, Cancer, Clonal evolution, In vivo models of leukaemia, Mutation 相似文献
939.
940.
Francisco Altamirano Claudio F. Perez Min Liu Jeffrey Widrick Elisabeth R. Barton Paul D. Allen Jose A. Adams Jose R. Lopez 《PloS one》2014,9(9)
Duchenne muscular dystrophy (DMD) is a genetic disorder caused by the absence of dystrophin in both skeletal and cardiac muscles. This leads to severe muscle degeneration, and dilated cardiomyopathy that produces patient death, which in most cases occurs before the end of the second decade. Several lines of evidence have shown that modulators of nitric oxide (NO) pathway can improve skeletal muscle and cardiac function in the mdx mouse, a mouse model for DMD. Whole body periodic acceleration (pGz) is produced by applying sinusoidal motion to supine humans and in standing conscious rodents in a headward-footward direction using a motion platform. It adds small pulses as a function of movement frequency to the circulation thereby increasing pulsatile shear stress to the vascular endothelium, which in turn increases production of NO. In this study, we examined the potential therapeutic properties of pGz for the treatment of skeletal muscle pathology observed in the mdx mouse. We found that pGz (480 cpm, 8 days, 1 hr per day) decreased intracellular Ca2+ and Na+ overload, diminished serum levels of creatine kinase (CK) and reduced intracellular accumulation of Evans Blue. Furthermore, pGz increased muscle force generation and expression of both utrophin and the carboxy-terminal PDZ ligand of nNOS (CAPON). Likewise, pGz (120 cpm, 12 h) applied in vitro to skeletal muscle myotubes reduced Ca2+ and Na+ overload, diminished abnormal sarcolemmal Ca2+ entry and increased phosphorylation of endothelial NOS. Overall, this study provides new insights into the potential therapeutic efficacy of pGz as a non-invasive and non-pharmacological approach for the treatment of DMD patients through activation of the NO pathway. 相似文献