首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   113141篇
  免费   2011篇
  国内免费   856篇
  2022年   153篇
  2021年   239篇
  2019年   200篇
  2018年   12024篇
  2017年   10804篇
  2016年   7750篇
  2015年   1203篇
  2014年   943篇
  2013年   1314篇
  2012年   5295篇
  2011年   13889篇
  2010年   12641篇
  2009年   8857篇
  2008年   10776篇
  2007年   12360篇
  2006年   1257篇
  2005年   1511篇
  2004年   1896篇
  2003年   1934篇
  2002年   1670篇
  2001年   477篇
  2000年   341篇
  1999年   285篇
  1998年   272篇
  1997年   215篇
  1996年   217篇
  1995年   182篇
  1994年   204篇
  1993年   195篇
  1992年   199篇
  1991年   205篇
  1990年   152篇
  1989年   163篇
  1988年   189篇
  1987年   171篇
  1986年   147篇
  1985年   183篇
  1984年   206篇
  1983年   206篇
  1982年   207篇
  1981年   239篇
  1980年   208篇
  1979年   163篇
  1978年   191篇
  1977年   169篇
  1975年   151篇
  1974年   164篇
  1973年   161篇
  1972年   334篇
  1971年   373篇
排序方式: 共有10000条查询结果,搜索用时 62 毫秒
981.
Cleavage and polyadenylation specificity factor 1 (CPSF1), a member of CPSF complex, has been reported to play a key role in pre-mRNA 3′-end formation, but its possible role in ovarian cancer remains unclear. In the present study, we found the mRNA level of CPSF1 was overexpressed in ovarian cancer tissues using Oncomine Cancer Microarray database. Then the loss-of-function assays, including CCK-8, colony formation and flow cytometry assays, were performed to determine the effects of CPSF1 on cell viability, proliferation, cell cycle and apoptosis of human ovarian cancer cell lines (SKOV-3 and OVCAR-3). The results indicated that depletion of CPSF1 suppressed cell viability, impaired colony formation ability, induced cell cycle arrest at G0/G1 phase and promoted cell apoptosis in ovarian cancer cells. Furthermore, knockdown of CPSF1 upregulated the expression of cleaved caspase-3 and PARP and downregulated CDK4/cyclin D1 expression. These data suggested that CPSF1 could promote ovarian cancer cell growth and proliferation in vitro and its depletion might serve as a potential therapeutic target for human ovarian cancer.  相似文献   
982.

Background

Recent studies demonstrated that long non-coding RNAs (lncRNAs) could be intricately implicated in cancer-related molecular networks, and related to cancer occurrence, development and prognosis. However, clinicopathological and molecular features for these cancer-related lncRNAs, which are very important in bridging lncRNA basic research with clinical research, fail to well settle to integration.

Results

After manually reviewing more than 2500 published literature, we collected the cancer-related lncRNAs with the experimental proof of functions. By integrating from literature and public databases, we constructed CRlncRNA, a database of cancer-related lncRNAs. The current version of CRlncRNA embodied 355 entries of cancer-related lncRNAs, covering 1072 cancer-lncRNA associations regarding to 76 types of cancer, and 1238 interactions with different RNAs and proteins. We further annotated clinicopathological features of these lncRNAs, such as the clinical stages and the cancer hallmarks. We also provided tools for data browsing, searching and download, as well as online BLAST, genome browser and gene network visualization service.

Conclusions

CRlncRNA is a manually curated database for retrieving clinicopathological and molecular features of cancer-related lncRNAs supported by highly reliable evidences. CRlncRNA aims to provide a bridge from lncRNA basic research to clinical research. The lncRNA dataset collected by CRlncRNA can be used as a golden standard dataset for the prospective experimental and in-silico studies of cancer-related lncRNAs. CRlncRNA is freely available for all users at http://crlnc.xtbg.ac.cn.
  相似文献   
983.
984.
985.
986.
Aluminum is associated with etiology of many neurodegenerative diseases specially Alzheimer’s disease. Chronic exposure to aluminum via drinking water results in aluminum deposition in the brain that leads to cognitive deficits. The study aimed to determine the effects of aluminum on cholinergic biomarkers, i.e., acetylcholine level, free choline level, and choline acetyltransferase gene expression, and how cholinergic deficit affects novel object recognition and sociability in mice. Mice were treated with AlCl3 (250 mg/kg). Acetylcholine level, free choline level, and choline acetyltransferase gene expression were determined in cortex, hippocampus, and amygdala. The mice were subjected to behavior tests (novel object recognition and social novelty preference) to assess memory deficits. The acetylcholine level in cortex and hippocampus was significantly reduced in aluminum-treated animals, as compared to cortex and hippocampus of control animals. Acetylcholine level in amygdala of aluminum-treated animals remained unchanged. Free choline level in all the three brain parts was found unaltered in aluminum-treated mice. The novel object recognition memory was severely impaired in aluminum-treated mice, as compared to the control group. Similarly, animals treated with aluminum showed reduced sociability compared to the control mice group. Our study demonstrates that aluminum exposure via drinking water causes reduced acetylcholine synthesis in spite of normal free choline availability. This deficit is caused by reduced recycling of acetylcholine due to lower choline acetyltransferase level. This cholinergic hypofunction leads to cognitive and memory deficits. Moreover, hippocampus is the most affected brain part after aluminum intoxication.  相似文献   
987.
The prokaryotic diversity associated with organic household waste (OHW), leachate (start-up inoculum), and mesophilic anaerobic digestion processes in the degradation of OHW for 44 and 90 days was investigated using a culture-independent approach. Bacterial and archaeal 16S rRNA and mcrA gene clone libraries were constructed from community DNA preparations. Bacterial clones were affiliated with 13 phyla, of which Firmicutes, Proteobacteria, and Bacteroidetes were represented in all libraries, whereas Actinobacteria, Thermotogae, Lentisphaerae, Acidobacteria, Chloroflexi, Cyanobacteria, Synergistetes, Spirochaetes, Deferribacteres, and Deinococcus-Thermus were exclusively identified in a single library. Within the Archaea domain, the Euryarchaeota phylum was the only one represented. Corresponding sequences were associated with the following orders of hydrogenotrophic methanogens: Methanomicrobiales (Methanoculleus genus) and Methanobacteriales (Methanosphaera and Methanobacterium genera). One archaeal clone was not affiliated with any order and may represent a novel taxon. Diversity indices showed greater diversity of Bacteria when compared to methanogenic Archaea.  相似文献   
988.
Aging is associated with the decline of cognitive properties. This situation is magnified when neurodegenerative processes associated with aging appear in human patients. Neuronal synaptic plasticity events underlie cognitive properties in the central nervous system. Caloric restriction (CR; either a decrease in food intake or an intermittent fasting diet) can extend life span and increase disease resistance. Recent studies have shown that CR can have profound effects on brain function and vulnerability to injury and disease. Moreover, CR can stimulate the production of new neurons from stem cells (neurogenesis) and can enhance synaptic plasticity, which modulate pain sensation, enhance cognitive function, and may increase the ability of the brain to resist aging. The beneficial effects of CR appear to be the result of a cellular stress response stimulating the production of proteins that enhance neuronal plasticity and resistance to oxidative and metabolic insults; they include neurotrophic factors, neurotransmitter receptors, protein chaperones, and mitochondrial biosynthesis regulators. In this review, we will present and discuss the effect of CR in synaptic processes underlying analgesia and cognitive improvement in healthy, sick, and aging animals. We will also discuss the possible role of mitochondrial biogenesis induced by CR in regulation of neuronal synaptic plasticity.  相似文献   
989.
A novel bacterium B9T was isolated from tidal flat sediment. Its morphology, physiology, biochemical features, and 16S rRNA gene sequence were characterized. Colonies of this strain are yellow and the cells are Gram-negative, rod-shaped, and do not require NaCl for growth. The 16S rRNA gene sequence similarity indicated that strain B9T is associated with the genus Lysobacter (≤ 97.2%), Xanthomonas (≤ 96.8%), Pseudomonas (≤ 96.7%), and Luteimonas (≤ 96.0%). However, within the phylogenetic tree, this novel strain shares a branching point with the species Luteimonas composti CC-YY255T (96.0%). The DNA-DNA hybridization experiments showed a DNA-DNA homology of 23.0% between strain B9T and Luteimonas mephitis B1953/27.1T. The G+C content of genomic DNA of the type strain is 64.7 mol% (SD, 1.1). The predominant fatty acids are iso-C11:0, iso-C15:0, iso-C16:0, iso-C17:0, iso-C17:0 ω9c, and iso-C11:0 3-OH. Combined analysis of the 16S rRNA gene sequences, fatty acid profile, and results from physiological and biochemical tests indicated that there is genotypic and phenotypic differentiation of the isolate from other Luteimonas species. For these reasons, strain B9T was proposed as a novel species, named Luteimonas aestuarii. The type strain of the new species is B9T (= KCTC 22048T, DSM 19680T).  相似文献   
990.
Ren F  Li BC  Zhang NN  Cao M  Dan WB  Zhang SQ 《Biotechnology letters》2008,30(6):1075-1080
B-Cell activating factor (BAFF) is critical for B cell survival and maturation; excessive expression of it corrupts B-cell tolerance and may lead to autoimmunity. The gene, scFv-Fc, coding for the antibody of BAFF was inserted into the eukaryotic expression vector, pPICZαA, and transformed into Pichia pastoris. A high-level expression strain was obtained using a ‘yeastern blotting’ method. The scFv-Fc antibody was purified and 56 mg was obtained from 1 l of culture supernatant. It retained high binding activity to both soluble BAFF and membrane-bound BAFF.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号