首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3940篇
  免费   337篇
  国内免费   1篇
  2023年   16篇
  2022年   25篇
  2021年   59篇
  2020年   34篇
  2019年   40篇
  2018年   83篇
  2017年   53篇
  2016年   91篇
  2015年   164篇
  2014年   206篇
  2013年   200篇
  2012年   293篇
  2011年   259篇
  2010年   174篇
  2009年   155篇
  2008年   220篇
  2007年   240篇
  2006年   209篇
  2005年   220篇
  2004年   172篇
  2003年   206篇
  2002年   176篇
  2001年   42篇
  2000年   31篇
  1999年   31篇
  1998年   48篇
  1997年   37篇
  1996年   32篇
  1995年   30篇
  1994年   23篇
  1993年   27篇
  1992年   15篇
  1991年   30篇
  1990年   42篇
  1989年   24篇
  1988年   30篇
  1987年   27篇
  1986年   16篇
  1985年   17篇
  1984年   23篇
  1983年   19篇
  1982年   22篇
  1981年   25篇
  1980年   19篇
  1978年   15篇
  1977年   16篇
  1974年   16篇
  1969年   13篇
  1968年   15篇
  1967年   15篇
排序方式: 共有4278条查询结果,搜索用时 31 毫秒
211.
The yeast protein cytochrome c peroxidase (Ccp1) is nuclearly encoded and imported into the mitochondrial intermembrane space, where it is involved in degradation of reactive oxygen species. It is known, that Ccp1 is synthesised as a precursor with a N-terminal pre-sequence, that is proteolytically removed during transport of the protein. Here we present evidence for a new processing pathway, involving novel signal peptidase activities. The mAAA protease subunits Yta10 (Afg3) and Yta12 (Rca1) were identified both to be essential for the first processing step. In addition, the Pcp1 (Ygr101w) gene product was found to be required for the second processing step, yielding the mature Ccp1 protein. The newly identified Pcp1 protein belongs to the rhomboid-GlpG superfamily of putative intramembrane peptidases. Inactivation of the protease motifs in mAAA and Pcp1 blocks the respective steps of proteolysis. A model of coupled Ccp1 transport and N-terminal processing by the mAAA complex and Pcp1 is discussed. Similar processing mechanisms may exist, because the mAAA subunits and the newly identified Pcp1 protein belong to ubiquitous protein families.  相似文献   
212.
Activation of astrocytes is a common feature of neurological disorders, but the importance of this phenomenon for neuronal outcome is not fully understood. Treatment of mixed hippocampal cultures of neurones and astrocytes from day 2-4 in vitro (DIV 2-4) with 1 micro m cytosine arabinofuranoside (AraC) caused an activation of astrocytes as detected by a stellate morphology and a 10-fold increase in glial fibrillary acidic protein (GFAP) level compared with vehicle-treated cultures. After DIV 12, we determined 43% and 97% damaged neurones 18 h after the exposure to glutamate (1 mm, 1 h) in cultures treated with vehicle and AraC, respectively. Dose-response curves were different with a higher sensitivity to glutamate in cultures treated with AraC (EC50 = 0.01 mm) than with vehicle (EC50 = 0.12 mm). The susceptibility of neurones to 1 mm glutamate did not correlate with the percentage of astrocytes and was insensitive to an inhibition of glutamate uptake. In cultures treated with vehicle and AraC, glutamate-induced neurotoxicity was mediated through stimulation of the NR1-NR2B subtype of NMDA receptors, because it was blocked by the NMDA receptor antagonist MK-801 and the NR1-NR2B selective receptor antagonist ifenprodil. Protein levels of the NR2A and NR2B subunits of NMDA receptor were similar in cultures treated with vehicle or AraC. AraC-induced changes in glutamate-induced neurotoxicity were mimicked by activation of protein kinase C (PKC), whereas neuronal susceptibility to glutamate was reduced in cultures depleted of PKC and treated with AraC suggesting that the increase in glutamate toxicity by activated astrocytes involves activation of PKC.  相似文献   
213.
214.
215.
To identify regulators of AU-rich element (ARE)-dependent mRNA turnover we have followed a genetic approach using a mutagenized cell line (slowC) that fails to degrade cytokine mRNA. Accordingly, a GFP reporter construct whose mRNA is under control of the ARE from interleukin-3 gives an increased fluorescence signal in slowC. Here we describe rescue of slowC by a retroviral cDNA library. Flow cytometry allowed us to isolate revertants with reconstituted rapid mRNA decay. The cDNA was identified as butyrate response factor-1 (BRF1), encoding a zinc finger protein homologous to tristetraprolin. Mutant slowC carries frame-shift mutations in both BRF1 alleles, whereas slowB with intermediate decay kinetics is heterozygous. By use of small interfering (si)RNA, independent evidence for an active role of BRF1 in mRNA degradation was obtained. In transiently transfected NIH 3T3 cells, BRF1 accelerated mRNA decay and antagonized the stabilizing effect of PI3-kinase, while mutation of the zinc fingers abolished both function and ARE-binding activity. This approach, which identified BRF1 as an essential regulator of ARE-dependent mRNA decay, should also be applicable to other cis-elements of mRNA turnover.  相似文献   
216.
The 3-hydroxypropionate cycle has been proposed as a new autotrophic CO(2) fixation pathway for the phototrophic green non-sulfur eubacterium Chloroflexus aurantiacus and for some chemotrophic archaebacteria. The cycle requires the reductive conversion of the characteristic intermediate 3-hydroxypropionate to propionyl-CoA. The specific activity of the 3-hydroxypropionate-, CoA-, K(+)-, and MgATP-dependent oxidation of NADPH in autotrophically grown cells was 0.09 micromol min(-1) mg(-1) protein, which was 2-fold down-regulated in heterotrophically grown cells. Unexpectedly, a single enzyme catalyzes the entire reaction sequence: 3-hydroxypropionate + MgATP + CoA + NADPH + H(+) --> propionyl-CoA + MgAMP + PP(i) + NADP(+) + H(2)O. The enzyme was purified 30-fold to near homogeneity and has a very large native molecular mass between 500 and 800 kDa, with subunits of about 185 kDa as judged by SDS-PAGE, suggesting a homotrimeric or homotetrameric structure. Upon incubation of this new enzyme, termed propionyl-CoA synthase, with the proteinase trypsin, the NADPH oxidation function of the enzyme was lost, whereas the enzyme still activated 3-hydroxypropionate to its CoA-thioester and dehydrated it to acrylyl-CoA. SDS-PAGE revealed that the subunits of propionyl-CoA synthase had been cleaved once and the N-terminal amino acid sequences of the two trypsin digestion products were determined. Two parts of the gene encoding propionyl-CoA synthase (pcs) were identified on two contigs of an incomplete genome data base of C. aurantiacus, and the sequence of the pcs gene was completed. Propionyl-CoA synthase is a natural fusion protein of 201 kDa consisting of a CoA ligase, an enoyl-CoA hydratase, and an enoyl-CoA reductase, the reductase domain containing the trypsin cleavage site. Similar polyfunctional large enzymes are common in secondary metabolism (e.g. polyketide synthases) but rare in primary metabolism (e.g. eukaryotic type I fatty acid synthase). These results lend strong support to the operation of the proposed pathway in autotrophic CO(2) fixation.  相似文献   
217.
Long-lived Th2 memory in experimental allergic asthma   总被引:3,自引:0,他引:3  
Although life-long immunity against pathogens is beneficial, immunological memory responses directed against allergens are potentially harmful. Because there is a paucity of information about Th2 memory cells in allergic disease, we established a model of allergic asthma in BALB/c mice to explore the generation and maintenance of Th2 memory. We induced disease without the use of adjuvants, thus avoiding Ag depots, and found that unlike allergic asthma in mice immunized with adjuvant, immunizing with soluble and aerosol OVA resulted in pathological lung lesions resembling human disease. To test memory responses we allowed mice with acute disease to recover and then re-exposed them to aerosol OVA a second time. Over 400 days later these mice developed OVA-dependent eosinophilic lung inflammation, airway hyperresponsiveness, mucus hypersecretion, and IgE. Over 1 year after recuperating from acute disease, mice had persistent lymphocytic lung infiltrates, Ag-specific production of IL-4 and IL-5 from spleen and lung cells in vitro, and elevated IgG1. Moreover, when recuperated mice were briefly aerosol challenged, we detected early expression of Th2 cytokine RNA in lungs. Taken together, these data demonstrate the presence of long-lived Th2 memory cells in spleen and lungs involved in the generation of allergic asthma upon Ag re-exposure.  相似文献   
218.
Both human immunodeficiency virus type 1 (HIV-1) and hepatitis C virus (HCV) lead to chronic infection in a high percentage of persons, and an expanding epidemic of HIV-1-HCV coinfection has recently been identified. These individuals provide an opportunity for simultaneous assessment of immune responses to two viral infections associated with chronic plasma viremia. In this study we analyzed the breadth and magnitude of the CD8(+)- and CD4(+)-T-lymphocyte responses in 22 individuals infected with both HIV-1 and HCV. A CD8(+)-T-lymphocyte response against HIV-1 was readily detected in all subjects over a broad range of viral loads. In marked contrast, HCV-specific CD8(+)-T-lymphocyte responses were rarely detected, despite viral loads in plasma that were on average 1,000-fold higher. The few HCV-specific responses that were observed were relatively weak and limited in breadth. CD4-proliferative responses against HIV-1 were detected in about half of the coinfected subjects tested, but no proliferative response against any HCV protein was found in these coinfected persons. These data demonstrate a major discordance in immune responses to two persistent RNA viruses. In addition, they show a consistent and profound impairment in cellular immune responses to HCV compared to HIV-1 in HIV-1-HCV-coinfected persons.  相似文献   
219.
The surface glycoprotein S of transmissible gastroenteritis virus (TGEV) has two binding activities. (i) Binding to porcine aminopeptidase N (pAPN) is essential for the initiation of infection. (ii) Binding to sialic acid residues on glycoproteins is dispensable for the infection of cultured cells but is required for enteropathogenicity. By comparing parental TGEV with mutant viruses deficient in the sialic acid binding activity, we determined the contributions of both binding activities to the attachment of TGEV to cultured cells. In the presence of a functional sialic acid binding activity, the amount of virus bound to two different porcine cell lines was increased sixfold compared to the binding of the mutant viruses. The attachment of parental virus was reduced to levels observed with the mutants when sialic acid containing inhibitors was present or when the cells were pretreated with neuraminidase. In virus overlay binding assays with immobilized cell surface proteins, the mutant virus only recognized pAPN. In addition, the parental virus bound to a high-molecular-mass sialoglycoprotein. The recognition of pAPN was sensitive to reducing conditions and was not dependent on sialic acid residues. On the other hand, binding to the sialic acid residues of the high-molecular-mass glycoprotein was observed regardless of whether the cellular proteins had been separated under reducing or nonreducing conditions. We propose that binding to a surface sialoglycoprotein is required for TGEV as a primary attachment site to initiate infection of intestinal cells. This concept is discussed in the context of other viruses that use two different receptors to infect cells.  相似文献   
220.
Retinoids are important signalling molecules in the development of limbs and in the determination of the anterior-posterior orientation of the embryo. The present study examined the content and distribution of retinoic acid, retinol and retinyl esters in porcine embryos during early gestation (gestation days 22-30) macroscopically and microscopically by its autofluorescence and by HPLC. Macroscopically, the yellowish-greenish autofluorescence characteristic of vitamin A was observed in tissues affected by morphogenesis, such as the limbs, in a spatial and temporal manner. Changes in the intensity of autofluorescence in the limbs paralleled changes in the concentration of retinoids in these structures. In the limbs and the body, retinol, retinyl palmitate, and all-trans-retinoic acid but neither the isomers of all-trans retinoic acid nor other retinoid metabolites were detected. In addition, the distribution of specific retinoid-binding proteins was investigated; these are involved in vitamin A transport, metabolism and signal transduction. Immunoreactive retinol-binding protein as well as cellular retinoic acid binding protein type I were only localised in the mesonephros, while the retinoid X receptor beta was widely distributed in most of the tissues and organs of the embryo throughout the time period investigated. The combination of autofluorescence and HPLC analysis allowed for the first time to attribute the yellowish-greenish autofluorescence in specific regions of the embryo to vitamin A, and offers a method to study the local cellular distribution of retinol and/or retinyl esters as well as their concentrations in embryonic tissues.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号