首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4376篇
  免费   415篇
  国内免费   2篇
  4793篇
  2023年   19篇
  2022年   29篇
  2021年   65篇
  2020年   35篇
  2019年   41篇
  2018年   87篇
  2017年   55篇
  2016年   92篇
  2015年   174篇
  2014年   230篇
  2013年   220篇
  2012年   315篇
  2011年   285篇
  2010年   193篇
  2009年   172篇
  2008年   231篇
  2007年   258篇
  2006年   223篇
  2005年   239篇
  2004年   194篇
  2003年   219篇
  2002年   197篇
  2001年   65篇
  2000年   44篇
  1999年   46篇
  1998年   54篇
  1997年   41篇
  1996年   45篇
  1995年   37篇
  1994年   32篇
  1993年   34篇
  1992年   30篇
  1991年   38篇
  1990年   48篇
  1989年   35篇
  1988年   43篇
  1987年   36篇
  1986年   25篇
  1985年   25篇
  1984年   25篇
  1983年   20篇
  1982年   28篇
  1981年   32篇
  1980年   24篇
  1979年   18篇
  1978年   19篇
  1977年   23篇
  1975年   19篇
  1974年   19篇
  1973年   16篇
排序方式: 共有4793条查询结果,搜索用时 0 毫秒
101.
102.
The sympathetic nervous system (SNS) contributes to immune balance by promoting anti-inflammatory B cells. However, whether B cells possess a self-regulating mechanism by which they modulate regulatory B cell (Breg) function is not well understood. In this study, we investigated the ability of B cells to synthesize their own catecholamines upon stimulation with different B cell activators and found that expression of the enzyme tyrosine hydroxylase (TH), required to generate catecholamines, is up-regulated by Toll-like receptor (TLR)9. This TLR9-dependent expression of TH correlated with up-regulation of adrenergic receptors (ADRs), enhanced interleukin (IL)-10 production, and overexpression of the co-inhibitory ligands programmed death ligand 1 (PD-L1) and Fas ligand (FasL). Moreover, concomitant stimulation of ß1-3-ADRs together with a B cell receptor (BCR)/TLR9 stimulus clearly enhances the anti-inflammatory potential of Bregs to suppress CD4 T cells, a crucial population in the pathogenesis of autoimmune diseases, like rheumatoid arthritis (RA). Furthermore, TH up-regulation was also demonstrated in B cells during the course of collagen-induced arthritis (CIA), a mouse model for the investigation of RA. In conclusion, our data show that B cells possess an autonomous mechanism to modulate their regulatory function in an autocrine and/or paracrine manner. These findings help to better understand the function of B cells in the regulation of autoimmune diseases and the interplay of SNS.

The sympathetic nervous system produces neurotransmitters such as catecholamines which contribute to immune balance by promoting anti-inflammatory B cells. This study shows that mouse B cells can themselves synthesize, sense, and transport catecholamines, which in turn modulate regulatory B cell function in an autocrine and/or paracrine manner to suppress T cell proliferation.  相似文献   
103.
104.
The genome size of the marine sponges Suberites domuncula and Geodia cydonium has been determined by flow cytofluorometric analysis using diamidino-phenylindole [DAPI]. Using human lymphocytes as reference the amount of DNA in cells from S. domuncula has been determined to be 3.7 pg and that of G. cydonium 3.3 pg. While no chromosomes could be identified in G. cydonium, the karyotype of the Suberites domuncula is 32 chromsomes in the diploid state. The size of the chromosomes was between 0.25 and 1.0 μm. No pronounced banding pattern was visible.  相似文献   
105.
106.
Ebola virus causes lethal hemorrhagic fever in humans, but currently there are no effective vaccines or antiviral compounds for this infectious disease. Passive transfer of monoclonal antibodies (MAbs) protects mice from lethal Ebola virus infection (J. A. Wilson, M. Hevey, R. Bakken, S. Guest, M. Bray, A. L. Schmaljohn, and M. K. Hart, Science 287:1664-1666, 2000). However, the epitopes responsible for neutralization have been only partially characterized because some of the MAbs do not recognize the short synthetic peptides used for epitope mapping. To identify the amino acids recognized by neutralizing and protective antibodies, we generated a recombinant vesicular stomatitis virus (VSV) containing the Ebola virus glycoprotein-encoding gene instead of the VSV G protein-encoding gene and used it to select escape variants by growing it in the presence of a MAb (133/3.16 or 226/8.1) that neutralizes the infectivity of the virus. All three variants selected by MAb 133/3.16 contained a single amino acid substitution at amino acid position 549 in the GP2 subunit. By contrast, MAb 226/8.1 selected three different variants containing substitutions at positions 134, 194, and 199 in the GP1 subunit, suggesting that this antibody recognized a conformational epitope. Passive transfer of each of these MAbs completely protected mice from a lethal Ebola virus infection. These data indicate that neutralizing antibody cocktails for passive prophylaxis and therapy of Ebola hemorrhagic fever can reduce the possibility of the emergence of antigenic variants in infected individuals.  相似文献   
107.
Bacillus licheniformis alpha-amylase (BLA) is a highly thermostable starch-degrading enzyme that has been extensively studied in both academic and industrial laboratories. For over a decade, we have investigated BLA thermal properties and identified amino acid substitutions that significantly increase or decrease the thermostability. This paper describes the cumulative effect of some of the most beneficial point mutations identified in BLA. Remarkably, the Q264S-N265Y double mutation led to a rather limited gain in stability but significantly improved the amylolytic function. The most hyperthermostable variants combined seven amino acid substitutions and inactivated over 100 times more slowly and at temperatures up to 23 degrees C higher than the wild-type enzyme. In addition, two highly destabilizing mutations were introduced in the metal binding site and resulted in a decrease of 25 degrees C in the half-inactivation temperature of the double mutant enzyme compared with wild-type. These mutational effects were analysed by protein modelling based on the recently determined crystal structure of a hyperthermostable BLA variant. Our engineering work on BLA shows that the thermostability of an already naturally highly thermostable enzyme can be substantially improved and modulated over a temperature range of 50 degrees C through a few point mutations.  相似文献   
108.
Mammalian liver exhibits expression of members of the family of multidrug resistance (mdr) transporters (P-glycoproteins). P-glycoprotein isoforms encoded by mdr1 genes participate in extrusion of an array of xenobiotics into the bile. Induction of mdr1b mRNA expression has been shown to occur in rat hepatocytes in response to hepatotrophic growth factors. As the cytokine tumor necrosis factor alpha (TNF-α) is known to exert a direct mitogenic effect on hepatocytes, its influence on mdr1b expression was investigated. In primary rat hepatocytes cultured in the absence of TNF-α, a time-dependent increase in basal expression of mdr1b mRNA and in immunodetectable P-glycoprotein was observed. In cells treated with TNF-α (4,000 U/ml) for 3 days, expression of mdr1b mRNA and of immunodetectable P-glycoprotein was induced approximately twofold. Moreover, intracellular steady-state levels of the mdr1 substrate rhodamine 123 were decreased in cells pretreated with TNF-α in comparison to controls, indicating an increase in functional transporter(s) mediating dye extrusion. Treatment of hepatocytes with antioxidants (1 mM ascorbic acid and 2% dimethyl sulfoxide) for 3 days markedly suppressed mdr1b mRNA and P-glycoprotein expression both in cells cultured in the presence of TNF-α and in the absence of the cytokine, but did not fully abolish mdr1b mRNA induction by TNF-α, supporting the notion that reactive oxygen species participate in regulation of basal mdr1b gene expression during hepatocyte culture. In conclusion, the present data indicate that by inducing mdr1b expression in hepatocytes, TNF-α may affect the capacity of the liver for extrusion or detoxification of endogenous or xenobiotic mdr1 substrates. J. Cell. Physiol. 176:506–515, 1998. © 1998 Wiley-Liss, Inc.  相似文献   
109.
Retinopathy is the most common microvascular diabetes complication and represents a major threat to the eyesight. The aim of this study was to address the role of pro- and anti-angiogenic molecules in diabetic retinopathy in the aqueous humor of the eye. Aqueous humor was collected at cataract surgery from 19 diabetic patients and from 13 age- and sex-matched normoglycemic controls. Levels of pro-angiogenic vascular endothelial growth factor (VEGF) and angiogenic inhibitor pigment epithelium-derived factor (PEDF) were determined. Angiogenic activity of the aqueous humor was quantified by measuring its effect on the migration of capillary endothelial cells. In the aqueous fluid, VEGF levels were increased in diabetics (mean values: 501 vs. 367 pg/ml; p = 0.05), compared to controls. PEDF was found to be decreased in diabetics (mean values: 2080 vs. 5780 ng/ml; p = 0.04) compared to controls. In seven diabetic patients with proliferative retinopathy, the most profound finding was a significant decrease of the PEDF level (mean value: 237 ng/ml), whereas VEGF levels were comparable to diabetic patients without proliferation (mean value: 3153; p = 0.003). Angiogenic activity in samples of patients from the control group was generally inhibitory due to PEDF, and inhibition was blocked by neutralizing antibodies to PEDF. Likewise, in diabetics without proliferation, angiogenic activity was also blocked by antibodies to PEDF. We will demonstrate here that the level of the natural ocular anti-angiogenic agent PEDF is inversely associated with proliferative retinopathy. PEDF is an important negative regulator of angiogenic activity of aqueous humor. Our data may have implications for the development of novel regimens for diabetic retinopathy.  相似文献   
110.
Anaerobic oxidation of aromatic compounds and hydrocarbons   总被引:10,自引:0,他引:10  
Aromatic compounds and hydrocarbons have in common a great stability due to resonance energy and inertness of CbondH and CbondC bonds. It has been taken for granted that the metabolism of these compounds obligatorily depends on molecular oxygen. Oxygen is required first to introduce hydroxyl groups into the substrate and then to cleave the aromatic ring. However, newly discovered bacterial enzymes and reactions involved in oxidation of aromatic and hydrocarbon compounds to CO(2) in the complete absence of molecular oxygen have been discovered. Of special interest are two reactions: the reduction of the aromatic ring of benzoyl-coenzyme A and the addition of fumarate to hydrocarbons. These reactions transform aromatic rings and hydrocarbons into products that can be oxidized via more conventional beta-oxidation pathways.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号