首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   314篇
  免费   32篇
  346篇
  2022年   4篇
  2021年   5篇
  2020年   2篇
  2019年   4篇
  2018年   2篇
  2017年   3篇
  2016年   5篇
  2015年   18篇
  2014年   8篇
  2013年   15篇
  2012年   14篇
  2011年   16篇
  2010年   20篇
  2009年   18篇
  2008年   11篇
  2007年   6篇
  2006年   6篇
  2005年   12篇
  2004年   6篇
  2003年   9篇
  2002年   10篇
  2001年   6篇
  2000年   11篇
  1999年   14篇
  1998年   4篇
  1996年   4篇
  1995年   4篇
  1994年   5篇
  1993年   2篇
  1992年   11篇
  1991年   5篇
  1990年   6篇
  1989年   6篇
  1988年   4篇
  1987年   4篇
  1986年   5篇
  1985年   2篇
  1984年   3篇
  1983年   2篇
  1982年   2篇
  1981年   10篇
  1979年   12篇
  1978年   12篇
  1977年   6篇
  1976年   1篇
  1975年   1篇
  1974年   5篇
  1973年   1篇
  1969年   1篇
  1967年   1篇
排序方式: 共有346条查询结果,搜索用时 15 毫秒
21.
Sterols are vital for cellular functions and eukaryotic development because of their essential role as membrane constituents. Sterol biosynthetic intermediates (SBIs) represent a potential reservoir of signaling molecules in mammals and fungi, but little is known about their functions in plants. SBIs are derived from the sterol C4-demethylation enzyme complex that is tethered to the membrane by Ergosterol biosynthetic protein28 (ERG28). Here, using nonlethal loss-of-function strategies focused on Arabidopsis thaliana ERG28, we found that the previously undetected SBI 4-carboxy-4-methyl-24-methylenecycloartanol (CMMC) inhibits polar auxin transport (PAT), a key mechanism by which the phytohormone auxin regulates several aspects of plant growth, including development and responses to environmental factors. The induced accumulation of CMMC in Arabidopsis erg28 plants was associated with diagnostic hallmarks of altered PAT, including the differentiation of pin-like inflorescence, loss of apical dominance, leaf fusion, and reduced root growth. PAT inhibition by CMMC occurs in a brassinosteroid-independent manner. The data presented show that ERG28 is required for PAT in plants. Furthermore, it is accumulation of an atypical SBI that may act to negatively regulate PAT in plants. Hence, the sterol pathway offers further prospects for mining new target molecules that could regulate plant development.  相似文献   
22.
The first step in the specific uptake of iron via siderophores in Gram-negative bacteria is the recognition and binding of a ferric siderophore by its cognate receptor. We investigated the molecular basis of this event through structural and biochemical approaches. FpvA, the pyoverdine–Fe transporter from Pseudomonas aeruginosa ATCC 15692 (PAO1 strain), is able to transport ferric–pyoverdines originating from other species, whereas most fluorescent pseudomonads are only able to use the one they produce among the more than 100 known different pyoverdines. We solved the structure of FpvA bound to non-cognate pyoverdines of high- or low-affinity and found a close correlation between receptor–ligand structure and the measured affinities. The structure of the first amino acid residues of the pyoverdine chain distinguished the high- and low-affinity binders while the C-terminal portion of the pyoverdines, often cyclic, does not appear to contribute extensively to the interaction between the siderophore and its transporter. The specificity of the ferric–pyoverdine binding site of FpvA is conferred by the structural elements common to all ferric–pyoverdines, i.e. the chromophore, iron, and its chelating groups.  相似文献   
23.
24.
We have recently reported the synthesis of a platinum(II) complex, made of estradiol, the female sex hormone, and a cisplatin analog, an anticancer drug, linked together by an eleven carbon atoms chain. The novel estradiol-Pt(II) hybrid molecule was synthesized in nine chemical steps with 10% overall yield. This new compound has been tested in vitro on estrogen-dependent (MCF-7) and -independent (MDA-MD-231) (ER(+) and ER(-)) cell lines. Interestingly, the biological activity was quite significant, more potent than that of cisplatin, the compound currently used in chemotherapy. The estrogen receptor binding affinity (ERBA) of this compound was very similar to that of 17beta-estradiol (E(2)) on both estrogen receptors (ERs), alpha and beta. In order to further study this type of molecule, we have decided to synthesize several analogs with the same estrogenic scaffold but with various chain lengths separating the estradiol from the toxic part of the molecule. This was planned in order to study the effect of the length of the linking chain on the biological activity of the hybrids. Four E(2)-Pt(II) hybrid molecules having 6-14 carbon atoms linking chain have been synthesized using a new synthetic methodology. They are synthesized in only eight chemical steps with 21% overall yield. The 17beta-estradiol-linked platinum(II) complexes have been tested for their receptor binding affinity as well as for their cytocidal activity on several breast cancer cell lines. The synthesis and biological results are reported herein.  相似文献   
25.
Phytosteryl esters (PE) are used as ingredients in functional food to decrease plasma concentration of low density lipoprotein-cholesterol (LDL-C). Effective impairment of cholesterol absorption by PE suggests that these esters are hydrolyzed by the pancreatic cholesterol esterase (CEase, EC 3.1.1.13) and the liberated sterol may interfere with cholesterol reducing its intestinal absorption. PE-enriched foods are marketed for cooking purposes, and temperature is one of the most important factors leading to the formation of oxidation products. Very little is known about the outcome of PE oxides during the digestive process. A new analytical method based on mass spectrometric detection directly after enzymatic reaction was developed to determine in vitro the activity of CEase on PE and their oxides present in functional food. Using this method, we identified a new inhibitor of CEase: sitosteryl 9,10-dihydroxystearate, which behaves as a non-competitive inhibitor of the hydrolysis of cholesteryl oleate and sitosteryl oleate.  相似文献   
26.

Background

Receptors with a single transmembrane (TM) domain are essential for the signal transduction across the cell membrane. NMR spectroscopy is a powerful tool to study structure of the single TM domain. The expression and purification of a TM domain in Escherichia coli (E.coli) is challenging due to its small molecular weight. Although ketosteroid isomerase (KSI) is a commonly used affinity tag for expression and purification of short peptides, KSI tag needs to be removed with the toxic reagent cyanogen bromide (CNBr).

Result

The purification of the TM domain of p75 neurotrophin receptor using a KSI tag with the introduction of a thrombin cleavage site is described herein. The recombinant fusion protein was refolded into micelles and was cleaved with thrombin. Studies showed that purified protein could be used for structural study using NMR spectroscopy.

Conclusions

These results provide another strategy for obtaining a single TM domain for structural studies without using toxic chemical digestion or acid to remove the fusion tag. The purified TM domain of p75 neurotrophin receptor will be useful for structural studies.  相似文献   
27.
α-Amylase activity (EC 3.2. 1.1) is greatly increased in leaves of tobacco (Nicotiana tabacum L. cv Samsun NN) infected with tobacco mosaic virus (TMV). The kinetics of enzyme induction during the hypersensitive reaction resemble those of other hydrolases known to be pathogenesis-related proteins of tobacco. Two α-amylases were purified from TMV-infected leaves and shown to have features in common with well-characterized pathogenesis-related proteins: they are acidic monomers that can be separated upon electrophoresis on basic native gels, and they are found in the apoplastic compartment of the cell. This extra-cellular localization was demonstrated by comparing the α-amylase partition between the intercellular wash fluid and the cell extract with that of proteins of known cellular compartmentalization. These data indicate an active secretion of both α-amylases produced in tobacco upon TMV infection.  相似文献   
28.
29.
30.
In this study, the effects of short-term diabetes (4 days) on rat renal glomerular cells proliferation and the potential involvement of sphingolipids in this process were investigated. Immunohistochemical analysis showed that streptozotocin (STZ)-induced diabetes promoted increased intra-glomerular hyperplasia, particularly marked for mesangial cells. This was associated with a concomitant increase in neutral ceramidase and sphingosine-kinase activities and the accumulation of the pro-proliferative sphingolipid sphingosine-1-phosphate, in glomeruli isolated from kidney cortex of STZ-treated rats. These results suggest a possible involvement of sphingolipid metabolites in the glomerular proliferative response during the early stages of diabetic nephropathy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号