首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16384篇
  免费   1455篇
  国内免费   9篇
  2021年   195篇
  2020年   109篇
  2019年   151篇
  2018年   193篇
  2017年   174篇
  2016年   304篇
  2015年   441篇
  2014年   513篇
  2013年   694篇
  2012年   871篇
  2011年   889篇
  2010年   589篇
  2009年   526篇
  2008年   780篇
  2007年   814篇
  2006年   834篇
  2005年   841篇
  2004年   829篇
  2003年   748篇
  2002年   767篇
  2001年   191篇
  2000年   145篇
  1999年   221篇
  1998年   239篇
  1997年   159篇
  1996年   182篇
  1995年   172篇
  1994年   213篇
  1993年   185篇
  1992年   163篇
  1991年   153篇
  1990年   143篇
  1989年   146篇
  1988年   132篇
  1987年   129篇
  1986年   125篇
  1985年   158篇
  1984年   182篇
  1983年   143篇
  1982年   215篇
  1981年   236篇
  1980年   224篇
  1979年   139篇
  1978年   170篇
  1977年   162篇
  1976年   135篇
  1975年   119篇
  1974年   150篇
  1973年   152篇
  1970年   96篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
11.
Functional rarefaction: estimating functional diversity from field data   总被引:1,自引:1,他引:0  
Studies in biodiversity-ecosystem function and conservation biology have led to the development of diversity indices that take species' functional differences into account. We identify two broad classes of indices: those that monotonically increase with species richness (MSR indices) and those that weight the contribution of each species by abundance or occurrence (weighted indices). We argue that weighted indices are easier to estimate without bias but tend to ignore information provided by rare species. Conversely, MSR indices fully incorporate information provided by rare species but are nearly always underestimated when communities are not exhaustively surveyed. This is because of the well-studied fact that additional sampling of a community may reveal previously undiscovered species. We use the rarefaction technique from species richness studies to address sample-size-induced bias when estimating functional diversity indices. Rarefaction transforms any given MSR index into a family of unbiased weighted indices, each with a different level of sensitivity to rare species. Thus rarefaction simultaneously solves the problem of bias and the problem of sensitivity to rare species. We present formulae and algorithms for conducting a functional rarefaction analysis of the two most widely cited MSR indices: functional attribute diversity (FAD) and Petchey and Gaston's functional diversity (FD). These formulae also demonstrate a relationship between three seemingly unrelated functional diversity indices: FAD, FD and Rao's quadratic entropy. Statistical theory is also provided in order to prove that all desirable statistical properties of species richness rarefaction are preserved for functional rarefaction.  相似文献   
12.
13.
14.
15.
16.
17.
Amphipyrinae have long been a catchall taxon for Noctuidae, with most members lacking discernible morphological synapomorphies that would allow their assignment to one of the many readily diagnosable noctuid subfamilies. Here data from seven gene regions (> 5500 bp) for more than 120 noctuid genera are used to infer a phylogeny for Amphipyrinae and related subfamilies. Sequence data for 57 amphipyrine genera – most represented by the type species of the genus – are examined. We present here the first large‐scale molecular phylogenetic study of Amphipyrinae and the largest molecular phylogeny of Noctuidae to date; several proposed nomenclatural changes for well‐supported results; and the identification of areas of noctuid phylogeny where greater taxon sampling and/or genomic‐scale data are needed. Adult and larval morphology, along with life‐history traits, for taxonomic groupings most relevant to the results are discussed. Amphipyrinae are significantly redefined; many former amphipyrines, excluded as a result of these analyses, are reassigned to other noctuid subfamily‐level taxa. Four genera, Chamaeclea Grote, Heminocloa Barnes & Benjamin, Hemioslaria Barnes & Benjamin and Thurberiphaga Dyar, are transferred to the tribe Chamaecleini Keegan & Wagner tribe n. in Acontiinae. Stiriina is elevated to Stiriinae rev. stat. , Grotellina is elevated to Grotellinae rev. stat. and Annaphilina is elevated to Annaphilini rev. stat. Acopa Harvey is transferred to Bryophilinae, Aleptina Dyar is transferred to Condicinae, Leucocnemis Hampson and Oxycnemis gracillinea (Grote) are transferred to Oncocnemidinae, Nacopa Barnes & Benjamin is transferred to Noctuinae and Narthecophora Smith is transferred to Stiriinae. Azenia Grote (and its subtribe Azeniina), Cropia Walker, Metaponpneumata Möschler, Sexserrata Barnes & Benjamin and Tristyla Smith are transferred to Noctuidae incertae sedis. Hemigrotella Barnes & McDunnough (formerly in subtribe Grotellina) is retained in Amphipyrinae. Argentostiria Poole and Bistica Dyar are retained in Stiriini but removed from incertae sedis position. This published work has been registered on ZooBank: http://zoobank.org/urn:lsid:zoobank.org:pub:4A140782‐31BA‐445A‐B7BA‐6EAB98ED43FA .  相似文献   
18.
False Images     
  相似文献   
19.
The cerebral cortex is divided into many functionally distinct areas. The emergence of these areas during neural development is dependent on the expression patterns of several genes. Along the anterior-posterior axis, gradients of Fgf8, Emx2, Pax6, Coup-tfi, and Sp8 play a particularly strong role in specifying areal identity. However, our understanding of the regulatory interactions between these genes that lead to their confinement to particular spatial patterns is currently qualitative and incomplete. We therefore used a computational model of the interactions between these five genes to determine which interactions, and combinations of interactions, occur in networks that reproduce the anterior-posterior expression patterns observed experimentally. The model treats expression levels as Boolean, reflecting the qualitative nature of the expression data currently available. We simulated gene expression patterns created by all possible networks containing the five genes of interest. We found that only of these networks were able to reproduce the experimentally observed expression patterns. These networks all lacked certain interactions and combinations of interactions including auto-regulation and inductive loops. Many higher order combinations of interactions also never appeared in networks that satisfied our criteria for good performance. While there was remarkable diversity in the structure of the networks that perform well, an analysis of the probability of each interaction gave an indication of which interactions are most likely to be present in the gene network regulating cortical area development. We found that in general, repressive interactions are much more likely than inductive ones, but that mutually repressive loops are not critical for correct network functioning. Overall, our model illuminates the design principles of the gene network regulating cortical area development, and makes novel predictions that can be tested experimentally.  相似文献   
20.
The Proceedings of the ECSA 21 symposium on Marine and Estuarine Gradients are reviewed. It is emphasised that this is probably the first time that a full set of papers on the tidal freshwater sections of estuaries has appeared. There is however some ambiguity in the terminology applied to such waters, and a more consistent terminology is proposed. In particular the estuary is defined as reaching upstream as far as the tidal limit, irrespective of salinity. A wide variety of gradients within estuaries and coastal waters are considered, but it is apparent that the crucial spatial gradients are based on salinity, oxygen and turbidity, and that many other gradients are co-variables with these parameters. Temperature is also important for temporal gradients.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号