首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1116篇
  免费   90篇
  国内免费   3篇
  2023年   5篇
  2022年   9篇
  2021年   22篇
  2020年   11篇
  2019年   14篇
  2018年   22篇
  2017年   11篇
  2016年   34篇
  2015年   37篇
  2014年   53篇
  2013年   65篇
  2012年   94篇
  2011年   66篇
  2010年   47篇
  2009年   49篇
  2008年   68篇
  2007年   86篇
  2006年   67篇
  2005年   59篇
  2004年   61篇
  2003年   49篇
  2002年   52篇
  2001年   23篇
  2000年   10篇
  1999年   14篇
  1998年   16篇
  1997年   14篇
  1996年   13篇
  1993年   4篇
  1992年   9篇
  1991年   6篇
  1990年   5篇
  1989年   4篇
  1988年   6篇
  1987年   5篇
  1985年   4篇
  1984年   4篇
  1983年   4篇
  1982年   4篇
  1979年   5篇
  1978年   4篇
  1977年   4篇
  1975年   4篇
  1973年   5篇
  1972年   5篇
  1971年   6篇
  1970年   7篇
  1969年   8篇
  1968年   4篇
  1967年   5篇
排序方式: 共有1209条查询结果,搜索用时 15 毫秒
81.
Natural protein crystals (polyhedra) armour certain viruses, allowing them to survive for years under hostile conditions. We have determined the structure of polyhedra of the baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV), revealing a highly symmetrical covalently cross‐braced robust lattice, the subunits of which possess a flexible adaptor enabling this supra‐molecular assembly to specifically entrap massive baculoviruses. Inter‐subunit chemical switches modulate the controlled release of virus particles in the unusual high pH environment of the target insect's gut. Surprisingly, the polyhedrin subunits are more similar to picornavirus coat proteins than to the polyhedrin of cytoplasmic polyhedrosis virus (CPV). It is, therefore, remarkable that both AcMNPV and CPV polyhedra possess identical crystal lattices and crystal symmetry. This crystalline arrangement must be particularly well suited to the functional requirements of the polyhedra and has been either preserved or re‐selected during evolution. The use of flexible adaptors to generate a powerful system for packaging irregular particles is characteristic of the AcMNPV polyhedrin and may provide a vehicle to sequester a wide range of objects such as biological nano‐particles.  相似文献   
82.
Landscape simplification has been clearly demonstrated to have negative impacts on the in-crop density and biological-control activity of natural enemies in agricultural landscapes. The role of spatial arrangement of the landscape, however, has not been investigated in agroecosystems. We applied cost–distance modeling to investigate the relationship between the in-crop density of natural enemies and the structural connectivity of non-crop land uses surrounding crops within Australian cotton landscapes. We further compared the explanatory power of this approach with the more commonly used spatially specific proportional-area approach, which considers landscape composition in terms of the proportional area of a given land use within a given radius. Cost–distance metrics offered a more significant explanation of in-crop density for the predatory beetle Dicranolaius bellulus (Coleoptera: Melyridae) than did the proportional-area approach. The in-crop density for this species was positively and significantly correlated with the connectivity of wooded land uses within a 3000 m radius. However, for natural enemy taxa that responded to landscape characteristics at smaller spatial scales (within a 750 m radius), namely Oxyopes spp. (Araneae: Oxyopidae) and Trichogramma spp., (Hymenoptera: Trichogrammatidae), the proportional-area approach gave a more significant explanation of in-crop density. Herbivore taxa responded weakly to proportional area at all scales and showed no correlation to cost–distance metrics. Findings indicate potential for simplified agricultural landscapes to be ‘selectively’ manipulated to enhance colonization of the crop by natural enemies, but not herbivores, by improving connectivity between crops and non-crop resources, through the presence of woody vegetation.  相似文献   
83.
84.
Soil fungal communities involved in the biodegradation of polyester polyurethane (PU) were investigated. PU coupons were buried in two sandy loam soils with different levels of organic carbon: one was acidic (pH 5.5), and the other was more neutral (pH 6.7). After 5 months of burial, the fungal communities on the surface of the PU were compared with the native soil communities using culture-based and molecular techniques. Putative PU-degrading fungi were common in both soils, as <45% of the fungal colonies cleared the colloidal PU dispersion Impranil on solid medium. Denaturing gradient gel electrophoresis showed that fungal communities on the PU were less diverse than in the soil, and only a few species in the PU communities were detectable in the soil, indicating that only a small subset of the soil fungal communities colonized the PU. Soil type influenced the composition of the PU fungal communities. Geomyces pannorum and a Phoma sp. were the dominant species recovered by culturing from the PU buried in the acidic and neutral soils, respectively. Both fungi degraded Impranil and represented >80% of cultivable colonies from each plastic. However, PU was highly susceptible to degradation in both soils, losing up to 95% of its tensile strength. Therefore, different fungi are associated with PU degradation in different soils but the physical process is independent of soil type.  相似文献   
85.
Biomimetic engineering of cellulose-based materials   总被引:1,自引:0,他引:1  
Biomimetics is a field of science that investigates biological structures and processes for their use as models for the development of artificial systems. Biomimetic approaches have considerable potential in the development of new high-performance materials with low environmental impact. The cell walls of different plant species represent complex and highly sophisticated composite materials that can provide inspiration on how to design and fabricate lightweight materials with unique properties. Such materials can provide environmentally compatible solutions in advanced packaging, electronic devices, vehicles and sports equipment. This review gives an overview of the structures and interactions in natural plant cell walls and describes the first attempts towards mimicking them to develop novel biomaterials.  相似文献   
86.
The objective of this study was to evaluate the nitrogen (N) biogeochemistry of an 18–22 year old forested watershed in western Maryland. We hypothesized that this watershed should not exhibit symptoms of N saturation. This watershed was a strong source of nitrate (NO3 ) to the stream in all years, with a mean annual export of 9.5 kg N ha−1 year−1 and a range of 4.4–18.4 kg N ha−1 year−1. During the 2001 and 2002 water years, wet deposition of inorganic N was 9.0 kg N ha−1 year−1 and 6.3 kg N ha−1 year−1, respectively. Watershed N export rates in 2001 and 2002 water years were 4.2 kg N ha−1 year−1 and 5.3 kg N ha−1 year−1, respectively. During the wetter water years of 2003 and 2004, the watershed exported 15.0 kg N ha−1 year−1 and 18.4 kg N ha−1 year−1, rates that exceeded annual wet deposition of N by a factor of two (7.5 kg N ha−1 year−1 in 2003) and three (5.5 kg N ha−1 year−1 in 2004). Consistent with the high rates of N export, were high concentrations (2.1–3.3%) of N in foliage, wood (0.3%) and fine roots, low C:N ratios in the forest floor (17–24) and mineral soil (14), high percentages (83–96%) of the amount of mineralized N that was nitrified and elevated N concentrations (up to 3 mg N l−1) in soil solution. Although this watershed contained a young aggrading forest, it exhibited several symptoms of N saturation commonly observed in more mature forests.  相似文献   
87.
Much experimental evidence shows that the cytoskeleton is a downstream target and effector during cell death in numerous neurodegenerative diseases, including Parkinson's, Huntington's, and Alzheimer's diseases. However, recent evidence indicates that cytoskeletal dysfunction can also trigger neuronal death, by mechanisms as yet poorly understood. This is the first of two papers in which we study a mathematical model of cytoskeleton-induced neuron death. In our model, assembly control of the neuronal cytoskeleton interacts with both cellular stress levels and cytosolic free radical concentrations to trigger neurodegeneration. This trigger mechanism is further modulated by the presence of cell interactions in the form of a diffusible toxic factor released by dying neurons. We find that, consistent with empirical observations, our model produces one-hit exponential and sigmoid patterns of cell dropout. In all cases, cell dropout is exponential-tailed and described accurately by a gamma distribution. The transition between exponential and sigmoidal is gradual, and determined by a synergetic interaction between the magnitude of fluctuations in cytoskeleton assembly control and by the degree of cell coupling. We conclude that a single mechanism involving neuron interactions and fluctuations in cytoskeleton assembly control is compatible with the experimentally observed range of neuronal attrition kinetics.  相似文献   
88.
Upper extremity musculoskeletal modeling is becoming increasingly sophisticated, creating a growing need for subject-specific muscle size parameters. One method for determining subject-specific muscle volume is magnetic resonance imaging (MRI). The purpose of this study was to determine the validity of MRI-derived muscle volumes in the human forearm across a variety of muscle sizes and shapes. Seventeen cadaveric forearms were scanned using a fast-spoiled gradient echo pulse sequence with high isotropic spatial resolution (1mm(3) voxels) on a 3T MR system. Pronator teres (PT), extensor carpi radialis brevis (ECRB), extensor pollicis longus (EPL), flexor carpi ulnaris (FCU), and brachioradialis (BR) muscles were manually segmented allowing volume to be calculated. Forearms were then dissected, muscles isolated, and muscle masses obtained, which allowed computation of muscle volume. Intraclass correlation coefficients (ICC(2,1)) and absolute volume differences were used to compare measurement methods. There was excellent agreement between the anatomical and MRI-derived muscle volumes (ICC = 0.97, relative error = 12.8%) when all 43 muscles were considered together. When individual muscles were considered, there was excellent agreement between measurement methods for PT (ICC = 0.97, relative error = 8.4%), ECRB (ICC = 0.93, relative error = 7.7%), and FCU (ICC = 0.91, relative error = 9.8%), and fair agreement for EPL (ICC = 0.68, relative error = 21.6%) and BR (ICC = 0.93, relative error = 17.2%). Thus, while MRI-based measurements of muscle volume produce relatively small errors in some muscles, muscles with high surface area-to-volume ratios may predispose them to segmentation error, and, therefore, the accuracy of these measurements may be unacceptable.  相似文献   
89.
Error bars in experimental biology   总被引:2,自引:0,他引:2       下载免费PDF全文
Error bars commonly appear in figures in publications, but experimental biologists are often unsure how they should be used and interpreted. In this article we illustrate some basic features of error bars and explain how they can help communicate data and assist correct interpretation. Error bars may show confidence intervals, standard errors, standard deviations, or other quantities. Different types of error bars give quite different information, and so figure legends must make clear what error bars represent. We suggest eight simple rules to assist with effective use and interpretation of error bars.  相似文献   
90.
Soil fungal communities involved in the biodegradation of polyester polyurethane (PU) were investigated. PU coupons were buried in two sandy loam soils with different levels of organic carbon: one was acidic (pH 5.5), and the other was more neutral (pH 6.7). After 5 months of burial, the fungal communities on the surface of the PU were compared with the native soil communities using culture-based and molecular techniques. Putative PU-degrading fungi were common in both soils, as <45% of the fungal colonies cleared the colloidal PU dispersion Impranil on solid medium. Denaturing gradient gel electrophoresis showed that fungal communities on the PU were less diverse than in the soil, and only a few species in the PU communities were detectable in the soil, indicating that only a small subset of the soil fungal communities colonized the PU. Soil type influenced the composition of the PU fungal communities. Geomyces pannorum and a Phoma sp. were the dominant species recovered by culturing from the PU buried in the acidic and neutral soils, respectively. Both fungi degraded Impranil and represented >80% of cultivable colonies from each plastic. However, PU was highly susceptible to degradation in both soils, losing up to 95% of its tensile strength. Therefore, different fungi are associated with PU degradation in different soils but the physical process is independent of soil type.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号