首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   54篇
  免费   7篇
  2017年   4篇
  2015年   2篇
  2014年   3篇
  2013年   2篇
  2012年   2篇
  2011年   6篇
  2010年   2篇
  2009年   5篇
  2008年   3篇
  2007年   1篇
  2006年   1篇
  2005年   3篇
  2004年   1篇
  2003年   3篇
  2002年   3篇
  2001年   1篇
  2000年   1篇
  1998年   4篇
  1996年   2篇
  1992年   1篇
  1986年   1篇
  1982年   3篇
  1981年   2篇
  1977年   2篇
  1975年   2篇
  1969年   1篇
排序方式: 共有61条查询结果,搜索用时 31 毫秒
21.
利用原位杂交的方法检测KGFmRNA在正常喉粘膜上皮(N)、慢性非特异性炎症(IF)、不典型增生(DYS)及鳞癌(SCC)中的转录水平,探讨KGF在喉粘膜良性及恶性病变中的分布和可能的作用。结果表明,KGFmRNA不仅在间质中的成纤维细胞中表达,少量的炎细胞及血管内皮细胞中亦表达,而且从N、IF、DYS到SCC、KGFmRNA转录水平逐渐增强;上皮细胞及肿瘤性上皮细胞不表达KGFmRNA,KGFmRNA在分化差的SCC周围间质中表达较分化好的SCC周围间质增多。结论:KGF在上皮与间充质细胞的交互作用中发挥着重要的作用,对维持喉粘膜正常结构、代谢及喉癌的发生发展具有重要意义。  相似文献   
22.
Dependent on the presence or absence of vimentin, primary mouse embryo fibroblasts exhibit different growth characteristics in vitro. While most Vim(+/+) fibroblasts stop dividing and die via apoptosis, a substantial fraction of cells immortalize and proliferate almost normally. Vim(-/-) fibroblasts cease to divide earlier, immortalize in vanishingly small numbers and thereafter proliferate extremely slowly. Early after immortalization, Vim(+/+) (imm) fibroblasts appear structurally almost normal, whereas Vim(-/-) (imm) fibroblasts equal postmitotic "crisis" cells, which are characterized by increased cell size, altered cell ultrastructure, nuclear enlargement, genome destabilization, structural degeneration of mitochondria, and diminution of mitochondrial respiratory activity. The differences between immortalized Vim(+/+) (imm) and Vim(-/-) (imm) fibroblasts persist during early cell cloning but disappear during serial subcultivation. At high cell passage, cloned, immortalized vim(-) fibroblasts grow nearly as fast as their cloned vim(+) counterparts, and also resemble them in size, ultrastructure, nuclear volume, and mitochondrial complement; they very likely employ redundancy to cope with the loss of vimentin function when adjusting structure and behavior to that of immortalized vim(+) fibroblasts. Reduction in nuclear size occurs via release of large amounts of filamentous chromatin into extracellular space; because it is complexed with extracellular matrix proteins, it tends to form clusters and to tightly stick to the surface of other cells, thus providing a potential for horizontal gene transfer. On the other hand, cloned vim(+) and vim(-) fibroblasts are equal in showing contact inhibition at young age and becoming anchorage-independent during serial subcultivation, as indicated by the formation of multilayered and -faceted cell sheets and huge spheroids on top of or in soft agar. With this, immortalized vim(-) fibroblasts reduce their adhesiveness to the substratum which, in their precrisis state and early after cloning, is much higher than that of their vim(+) counterparts. In addition, the coupling between the mitochondrial respiratory chain and oxidative phosphorylation is stronger in vim(+) than vim(-) fibroblasts. It appears from these data that after explantation of fibroblasts from the mouse embryo the primary cause of cell and mitochondrial degeneration, including genomic instability, is the mitochondrial production of reactive oxygen species in a vicious circle, and that vimentin provides partial protection from oxidative damage. As a matrix protein with specific in vitro and in vivo affinities for nuclear and mitochondrial, recombinogenic DNA, it may exert this effect preferentially at the genome level via its influence on recombination and repair processes, and in this way also assist the cells in immortalizing. Additional protection of mitochondria by vimentin may occur at the level of mitochondrial fatty acid metabolism.  相似文献   
23.
To extend previous observations demonstrating differences in number, morphology, and activity of mitochondria in spontaneously immortalized vim(+) and vim(-) fibroblasts derived from wild-type and vimentin knockout mice, some structural and functional aspects of mitochondrial genome performance and integrity in both types of cells were investigated. Primary Vim(+/+) and Vim(-/-) fibroblasts, which escaped terminal differentiation by immortalization were characterized by an almost twofold lower mtDNA content in comparison to that of their primary precursor cells, whereby the average mtDNA copy number in two clones of vim(+) cells was lower by a factor of 0.6 than that in four clones of vim(-) cells. However, during serial subcultivation up to high passage numbers, the vim(+) and vim() fibroblasts increased their mtDNA copy number 1.5- and 2.5-fold, respectively. While early-passage cells of the vim(+) and vim(-) fibroblast clones differed only slightly in the ratio between mtDNA content and mitochondrial mass represented by mtHSP70 protein, after ca. 300 population doublings the average mtDNA/mtmass ratio in the vim(+) and vim() cells was increased by a factor of 2 and 4.5, respectively. During subcultivation, both types of cells acquired the fully transformed phenotype. These findings suggest that cytoskeletal vimentin filaments exert a strong influence on the mechanisms controlling mtDNA copy number during serial subcultivation of immortalized mouse embryo fibroblasts, and that vimentin deficiency causes a disproportionately enhanced mtDNA content in high-passage vim(-) fibroblasts. Such a role of vimentin filaments was supported by the stronger retention potential for mtDNA and mtDNA polymerase (gamma) detected in vim(+) fibroblasts by Triton X-100 extraction of mitochondria and agaroseembedded cells. Moreover, although the vim(+) and vim(-) fibroblasts were equally active in generating free radicals, the vim(-) cells exhibited higher levels of immunologically detectable 8-oxoG and mismatch repair proteins MSH2 and MLH1 in their mitochondria. Because in vim(-) fibroblasts only one point mutation was detected in the mtDNA D-loop control region, these cells are apparently able to efficiently remove oxidatively damaged nucleobases. On the other hand, a number of large-scale mtDNA deletions were found in high-passage vim(-) fibroblasts, but not in low-passage vim(-) cells and vim(+) cells of both low and high passage. Large mtDNA deletions were also induced in young vim(-) fibroblasts by treatment with the DNA intercalator ethidium bromide, whereas no such deletions were found after treatment of vim(+) cells. These results indicate that in immortalized vim(-) fibroblasts the mitochondrial genome is prone to large-scale rearrangements, probably due to insufficient control of mtDNA repair and recombination processes in the absence of vimentin.  相似文献   
24.
25.
26.
27.
28.
A plant growth-promoting bacterium, Kluyvera ascorbata SUD165, that contained high levels of heavy metals was isolated from soil collected near Sudbury, Ontario, Canada. The bacterium was resistant to the toxic effects of Ni2+, Pb2+, Zn2+, and CrO4, produced a siderophore(s), and displayed 1-aminocyclopropane-1-carboxylic acid deaminase activity. Canola seeds inoculated with this bacterium and then grown under gnotobiotic conditions in the presence of high concentrations of nickel chloride were partially protected against nickel toxicity. In addition, protection by the bacterium against nickel toxicity was evident in pot experiments with canola and tomato seeds. The presence of K. ascorbata SUD165 had no measurable influence on the amount of nickel accumulated per milligram (dry weight) of either roots or shoots of canola plants. Therefore, the bacterial plant growth-promoting effect in the presence of nickel was probably not attributable to the reduction of nickel uptake by seedlings. Rather, it may reflect the ability of the bacterium to lower the level of stress ethylene induced by the nickel.  相似文献   
29.
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号