首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   582篇
  免费   56篇
  2021年   4篇
  2020年   5篇
  2019年   5篇
  2018年   10篇
  2017年   7篇
  2016年   19篇
  2015年   21篇
  2014年   24篇
  2013年   45篇
  2012年   39篇
  2011年   31篇
  2010年   32篇
  2009年   25篇
  2008年   41篇
  2007年   34篇
  2006年   40篇
  2005年   34篇
  2004年   28篇
  2003年   28篇
  2002年   20篇
  2001年   9篇
  2000年   9篇
  1999年   11篇
  1998年   2篇
  1997年   5篇
  1996年   6篇
  1995年   3篇
  1994年   3篇
  1993年   5篇
  1992年   8篇
  1991年   7篇
  1990年   7篇
  1989年   7篇
  1988年   8篇
  1987年   6篇
  1986年   8篇
  1985年   5篇
  1984年   3篇
  1983年   5篇
  1982年   2篇
  1981年   2篇
  1979年   4篇
  1978年   3篇
  1975年   3篇
  1974年   3篇
  1973年   2篇
  1971年   1篇
  1968年   2篇
  1967年   1篇
  1966年   2篇
排序方式: 共有638条查询结果,搜索用时 15 毫秒
61.
Mitochondrial carriers are a family of transport proteins that shuttle metabolites, nucleotides, and coenzymes across the mitochondrial membrane. The function of only a few of the 35 Saccharomyces cerevisiae mitochondrial carriers still remains to be uncovered. In this study, we have functionally defined and characterized the S. cerevisiae mitochondrial carrier Yhm2p. The YHM2 gene was overexpressed in S. cerevisiae, and its product was purified and reconstituted into liposomes. Its transport properties, kinetic parameters, and targeting to mitochondria show that Yhm2p is a mitochondrial transporter for citrate and oxoglutarate. Reconstituted Yhm2p also transported oxaloacetate, succinate, and fumarate to a lesser extent, but virtually not malate and isocitrate. Yhm2p catalyzed only a counter-exchange transport that was saturable and inhibited by sulfhydryl-blocking reagents but not by 1,2,3-benzenetricarboxylate (a powerful inhibitor of the citrate/malate carrier). The physiological role of Yhm2p is to increase the NADPH reducing power in the cytosol (required for biosynthetic and antioxidant reactions) and probably to act as a key component of the citrate-oxoglutarate NADPH redox shuttle between mitochondria and cytosol. This protein function is based on observations documenting a decrease in the NADPH/NADP+ and GSH/GSSG ratios in the cytosol of ΔYHM2 cells as well as an increase in the NADPH/NADP+ ratio in their mitochondria compared with wild-type cells. Our proposal is also supported by the growth defect displayed by the ΔYHM2 strain and more so by the ΔYHM2ΔZWF1 strain upon H2O2 exposure, implying that Yhm2p has an antioxidant function.  相似文献   
62.
The solution structure of Escherichia coli acylphosphatase (E. coli AcP), a small enzyme catalyzing the hydrolysis of acylphosphates, was determined by (1)H and (15)N NMR and restrained modelling calculation. In analogy with the other members of AcP family, E. coli AcP shows an alpha/beta sandwich domain composed of four antiparallel and one parallel beta-strand, assembled in a five-stranded beta-sheet facing two antiparallel alpha-helices. The pairwise RMSD values calculated for the backbone atoms of E. coli and Sulfolobus solfataricus AcP, Bovine common type AcP and Horse muscle AcP are 2.18, 5.31 and 5.12 A, respectively. No significant differences are present in the active site region and the catalytic residue side chains are consistently positioned in the structures.  相似文献   
63.
Induction of multispecific, functional CD4+ and CD8+ T cells is the immunological hallmark of acute self-limiting hepatitis C virus (HCV) infection in humans. In the present study, we showed that gene electrotransfer (GET) of a novel candidate DNA vaccine encoding an optimized version of the nonstructural region of HCV (from NS3 to NS5B) induced substantially more potent, broad, and long-lasting CD4+ and CD8+ cellular immunity than naked DNA injection in mice and in rhesus macaques as measured by a combination of assays, including IFN-gamma ELISPOT, intracellular cytokine staining, and cytotoxic T cell assays. A protocol based on three injections of DNA with GET induced a substantially higher CD4+ T cell response than an adenovirus 6-based viral vector encoding the same Ag. To better evaluate the immunological potency and probability of success of this vaccine, we have immunized two chimpanzees and have compared vaccine-induced cell-mediated immunity to that measured in acute self-limiting infection in humans. GET of the candidate HCV vaccine led to vigorous, multispecific IFN-gamma+CD8+ and CD4+ T lymphocyte responses in chimpanzees, which were comparable to those measured in five individuals that cleared spontaneously HCV infection. These data support the hypothesis that T cell responses elicited by the present strategy could be beneficial in prophylactic vaccine approaches against HCV.  相似文献   
64.
The capability of microorganisms to utilize different carbohydrates as energy source reflects the availability of these substrates in their habitat. Investigation of the proteins involved in carbohydrate usage, in parallel with analysis of their expression, is then likely to provide information on the interaction between microorganisms and their ecosystem. We analysed the growth behaviour of the marine Antarctic bacterium Pseudoalteromonas haloplanktis TAC125 in the presence and in the absence of different carbon source. A marked increase in the optical density was detected when l-malate was added to the growth medium. Bacterial proteins differently expressed in the presence of l-malate were identified by proteomic profiling experiments. On the basis of their relative increase, six proteins were selected for further analyses. Among these, the expression of a putative outer membrane porin was demonstrated to be heavily induced by l-malate. The presence of a functionally active two-component regulatory system very likely controlled by l-malate was found in the upstream region of the porin gene. A non functional genomic porin mutant was then constructed showing a direct involvement of the protein in the uptake of l-malate. To the best of our knowledge, the occurrence of such a regulatory system has never been reported in Pseudoalteromonads so far and might constitute a key step in the development of an effective inducible cold expression system.  相似文献   
65.
The optimization of production strategy is a very useful tool to attain high level of recombinant protein at a low cost. A promising biotechnological application of psychrophilic bacteria is their use as non-conventional host for the recombinant production of useful proteins. The lowering of the expression temperature can in fact facilitate the correct folding of heterologous proteins that accumulate in insoluble form as inclusion bodies when produced in Escherichia coli. An example of such "difficult" proteins is the human nerve growth factor (hNGF). The gene encoding the mature form of hNGF was expressed in the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125 at 4 degrees C. Western blotting experiments demonstrated that the protein was produced in soluble form and translocated in the periplasmic space. Furthermore, an analytical gel filtration chromatography confirmed that the recombinant protein was largely in dimeric form. For a more efficient recombinant rhNGF production, the influence of cultivation operational strategies and growth conditions (medium composition, temperature, specific growth rate) on biomass yield and recombinant protein production was investigated in batch and chemostat cultivations. The highest product yield of soluble rhNGF (7.5mg(NGF)g(dryweight)(-1)) has been achieved in batch culture at 4 degrees C on Schatz medium with addition of tryptone and vitamins.  相似文献   
66.
CD1 proteins present lipid antigens to T cells. The antigens are acquired in the endosomal compartments. This raises the question of how the large hydrophobic CD1 pockets are preserved between the moment of biosynthesis in the endoplasmic reticulum and arrival to the endosomes. To address this issue, the natural ligands associated with a soluble form of human CD1b have been investigated. Using isoelectric focusing, native mass spectrometry and resolving the crystal structure at 1.8 A resolution, we found that human CD1b is simultaneously associated with endogenous phosphatidylcholine (PC) and a 41-44 carbon atoms-long spacer molecule. The two lipids appear to work in concert to stabilize the CD1b groove, their combined size slightly exceeding the maximal groove capacity. We propose that the spacer serves to prevent binding of ligands with long lipid tails, whereas short-chain lipids might still displace the PC, which is exposed at the groove entrance. The data presented herein explain how the CD1b groove is preserved, and provide a rationale for the in vivo antigen-binding properties of CD1b.  相似文献   
67.
The mitochondrial carriers are a family of transport proteins that shuttle metabolites, nucleotides, and cofactors across the inner mitochondrial membrane. In Saccharomyces cerevisiae, NAD+ is synthesized outside the mitochondria and must be imported across the permeability barrier of the inner mitochondrial membrane. However, no protein responsible for this transport activity has ever been isolated or identified. In this report, the identification and functional characterization of the mitochondrial NAD+ carrier protein (Ndt1p) is described. The NDT1 gene was overexpressed in bacteria. The purified protein was reconstituted into liposomes, and its transport properties and kinetic parameters were characterized. It transported NAD+ and, to a lesser extent, (d)AMP and (d)GMP but virtually not alpha-NAD+, NADH, NADP+, or NADPH. Transport was saturable with an apparent Km of 0.38 mM for NAD+. The Ndt1p-GFP was found to be targeted to mitochondria. Consistently with Ndt1p localization and its function as a NAD+ transporter, cells lacking NDT1 had reduced levels of NAD+ and NADH in their mitochondria and reduced activity of mitochondrial NAD+-requiring enzymes. Similar results were also found in the mitochondria of cells lacking NDT2 that encodes a protein (Ndt2p) displaying 70% homology with Ndt1p. The delta ndt1 delta ndt2 double mutant exhibited lower mitochondrial NAD+ and NADH levels than the single deletants and a more pronounced delay in growth on nonfermentable carbon sources. The main role of Ndt1p and Ndt2p is to import NAD+ into mitochondria by unidirectional transport or by exchange with intramitochondrially generated (d)AMP and (d)GMP.  相似文献   
68.
The inner membranes of mitochondria contain a family of carrier proteins that are responsible for the transport in and out of the mitochondrial matrix of substrates, products, co-factors and biosynthetic precursors that are essential for the function and activities of the organelle. This family of proteins is characterized by containing three tandem homologous sequence repeats of approximately 100 amino acids, each folded into two transmembrane alpha-helices linked by an extensive polar loop. Each repeat contains a characteristic conserved sequence. These features have been used to determine the extent of the family in genome sequences. The genome of Saccharomyces cerevisiae contains 34 members of the family. The identity of five of them was known before the determination of the genome sequence, but the functions of the remaining family members were not. This review describes how the functions of 15 of these previously unknown transport proteins have been determined by a strategy that consists of expressing the genes in Escherichia coli or Saccharomyces cerevisiae, reconstituting the gene products into liposomes and establishing their functions by transport assay. Genetic and biochemical evidence as well as phylogenetic considerations have guided the choice of substrates that were tested in the transport assays. The physiological roles of these carriers have been verified by genetic experiments. Various pieces of evidence point to the functions of six additional members of the family, but these proposals await confirmation by transport assay. The sequences of many of the newly identified yeast carriers have been used to characterize orthologs in other species, and in man five diseases are presently known to be caused by defects in specific mitochondrial carrier genes. The roles of eight yeast mitochondrial carriers remain to be established.  相似文献   
69.
In this study we provide the first in vivo evidences showing that, under physiological conditions, "tissue" transglutaminase (TG2) might acts as a protein disulphide isomerase (PDI) and through this activity contributes to the correct assembly of the respiratory chain complexes. Mice lacking TG2 exhibit mitochondrial energy production impairment, evidenced by decreased ATP levels after physical challenge. This defect is phenotypically reflected in a dramatic decrease of motor behaviour of the animals. We propose that the molecular mechanism, underlying such a phenotype, resides in a defective disulphide bonds formation in ATP synthase (complex V), NADH-ubiquinone oxidoreductase (complex I), succinate-ubiquinone oxidoreductase (complex II) and cytochrome c oxidase (complex IV). In addition, TG2-PDI might control the respiratory chain by modulating the formation of the prohibitin complexes. These data elucidate a new pathway that directly links the TG2-PDI enzymatic activity with the regulation of mitochondrial respiratory chain function.  相似文献   
70.

Background

CpG island hypermethylation of gene promoters and regulatory regions is a well-known mechanism of epigenetic silencing of tumor suppressors and is directly linked to carcinogenesis. Wilm’s tumor gene (WT1) is a tumor suppressor protein involved in the regulation of human cell growth and differentiation and a modulator of oncogenic K Ras signaling in lung cancer. Changes in the pattern of methylation of the WT1 gene have not yet been studied in detail in human lung cancer. In this study we compared the methylation profile of WT1 gene in samples of neoplastic and non-neoplastic lung tissue taken from the same patients.

Methods

DNA was extracted from neoplastic and normal lung tissue obtained from 16 patients with non small cell lung cancer (NSCLC). The methylation status of 29 CpG islands in the 5′ region of WT1 was determined by pyrosequencing. Statistical analysis was carried out by T test and Mann Whitney test.

Results

The mean percentage of methylation, considering all CpG islands of WT1 in the neoplastic tissues of the 16 NSCLC patients, was 16.2 ± 3.4, whereas in the normal lung tissue from the same patients it was 5.6 ± 1.7 (p < 0.001). Adenocarcinomas presented higher methylation levels than squamous cell carcinomas (p < 0,001).

Conclusions

Methylation of WT1 gene is significantly increased in NSCLC. Both histotype and exposure to cigarette smoke heavily influence the pattern of CpG islands which undergo hypermethylation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号