首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1656篇
  免费   102篇
  2022年   9篇
  2021年   16篇
  2020年   7篇
  2019年   8篇
  2018年   20篇
  2017年   17篇
  2016年   23篇
  2015年   37篇
  2014年   48篇
  2013年   79篇
  2012年   72篇
  2011年   65篇
  2010年   36篇
  2009年   43篇
  2008年   63篇
  2007年   80篇
  2006年   55篇
  2005年   55篇
  2004年   56篇
  2003年   73篇
  2002年   59篇
  2001年   65篇
  2000年   77篇
  1999年   51篇
  1998年   18篇
  1997年   27篇
  1996年   24篇
  1995年   32篇
  1994年   12篇
  1993年   20篇
  1992年   50篇
  1991年   46篇
  1990年   40篇
  1989年   31篇
  1988年   34篇
  1987年   41篇
  1986年   40篇
  1985年   20篇
  1984年   22篇
  1983年   26篇
  1982年   13篇
  1981年   25篇
  1980年   14篇
  1979年   18篇
  1978年   13篇
  1977年   8篇
  1976年   12篇
  1973年   7篇
  1971年   7篇
  1970年   8篇
排序方式: 共有1758条查询结果,搜索用时 46 毫秒
131.
Paroxysmal kinesigenic choreoathetosis (PKC), the most frequently described type of paroxysmal dyskinesia, is characterized by recurrent, brief attacks of involuntary movements induced by sudden voluntary movements. Some patients with PKC have a history of infantile afebrile convulsions with a favorable outcome. To localize the PKC locus, we performed genomewide linkage analysis on eight Japanese families with autosomal dominant PKC. Two-point linkage analysis provided a maximum LOD score of 10.27 (recombination fraction [theta] =.00; penetrance [p] =.7) at marker D16S3081, and a maximum multipoint LOD score for a subset of markers was calculated to be 11.51 (p = 0.8) at D16S3080. Haplotype analysis defined the disease locus within a region of approximately 12.4 cM between D16S3093 and D16S416. P1-derived artificial chromosome clones containing loci D16S3093 and D16S416 were mapped, by use of FISH, to 16p11.2 and 16q12.1, respectively. Thus, in the eight families studied, the chromosomal localization of the PKC critical region (PKCR) is 16p11.2-q12.1. The PKCR overlaps with a region responsible for "infantile convulsions and paroxysmal choreoathetosis" (MIM 602066), a recently recognized clinical entity with benign infantile convulsions and nonkinesigenic paroxysmal dyskinesias.  相似文献   
132.
A partially automated technique for the isolation and characterization of N-linked sugar chains from glycoproteins of crude tissue samples is established. The N-linked sugar chains from the acetone-extracted tissues are made free by a process of hydrazinolysis and subsequently N-acetylated by GlycoPrep 1000 (Oxford Glycosystems). These free sugar chains are further converted to pyridylamino derivatives by GlycoTag (Takara). Characterization of these sugar chains is achieved by a combination of HPLC columns using a highly sensitive fluorescence detector at femtomole levels. Tissue sample can be successfully pyridylaminated and analyzed to give highly reproducible results with consistent yield, requiring fewer purification steps, minimum skills, and less time. Moreover, fixed tissues can also be analyzed employing this technique, giving a similar sugar chain pattern compared to normal tissue samples. Using this method we show that the pattern of N-linked sugar chains present in human sera or in one small region of brain is strikingly similar among the different individuals. However, the absence of a highlighted peak in one of the samples suggests this method can be extrapolated to identify changes, if any, associated with disorders such as inflammation or cancer. Furthermore, this two-dimensional display of sugar chains would discover the function-specific molecules as we see in proteins.  相似文献   
133.
An NADPH-dependent alpha-keto amide reductase was purified from Saccharomyces cerevisiae. The molecular mass of the native enzyme was estimated to be 33 and 36 kDa by gel filtration chromatography and SDS-polyacrylamide gel electrophoresis, respectively. The purified enzyme showed a reducing activity not only for aromatic alpha-keto amides but also for aliphatic and aromatic alpha-keto esters. The internal sequence of the enzyme was identical with that of a hypothetical protein (ORF YDL 124w) coded by yeast chromosome IV.  相似文献   
134.
The primary amino groups of biomolecules such as aminophospholipids, as well as proteins, are the potential targets of covalent modifications by lipid peroxidation products; however, little attention has been paid to the modification of aminophospholipids such as phosphatidylethanolamine (PE). The purpose of this study is to characterize the formation of a novel modified phospholipid, N-(hexanoyl)phosphatidylethanolamine (HEPE), in the reaction of PE with lipid hydroperoxides using mass spectrometric analyses. Upon reaction of egg PE with 13-hydroperoxyoctadecadienoic acid or other oxidized polyunsaturated fatty acids followed by phospholipase D-mediated hydrolysis, the formation of N-(hexanoyl)ethanolamine (HEEA), a head group of HEPE, was confirmed by isotope dilution liquid chromatography/tandem mass spectrometry. Moreover, increasing HEEA was detected in the hydrolysates of oxidized erythrocyte ghosts and low-density lipoprotein with their increasing lipid peroxidation levels. Collectively, these results suggest that the N-hexanoylated product of phospholipid, HEPE, can be generated during lipid peroxidation and may serve as one mechanism for the covalent modification of aminophospholipids in vivo.  相似文献   
135.
Magnesium-dependent neutral sphingomyelinase (N-SMase) present in plasma membranes is an enzyme that can be activated by stress in the form of inflammatory cytokines, serum deprivation, and hypoxia. The design of small molecule N-SMase inhibitors may offer new therapies for the treatment of inflammation, ischemic injury, and cerebral infarction. Recently, we synthesized a series of difluoromethylene analogues (SMAs) of sphingomyelin. We report here the effects of SMAs on the serum/glucose deprivation-induced death of neuronally differentiated pheochromocytoma (PC-12) cells and on cerebral infarction in mice. SMAs inhibited the enhanced N-SMase activity in the serum/glucose-deprived PC-12 cells, and thereby suppressed the apoptotic sequence: ceramide formation, c-Jun N-terminal kinase phosphorylation, caspase-3 activation, and DNA fragmentation in the nuclei. Administration of SMA-7 (10 mg/kg i.v.) with IC50= 3.3 microM to mice whose middle cerebral arteries were occluded reduced significantly the size of the cerebral infarcts, compared to the control mice. These results suggest that N-SMase is a key component of the signaling pathways in cytokine- and other stress-induced cellular responses, and that inhibiting or stopping N-SMase activity is an important strategy to prevent neuron death from ischemia.  相似文献   
136.
Singlet oxygen is regarded as contributing to the pathogenesis of various diseases including light-induced skin disorders and inflammatory response. In this study, the correlation between singlet oxygen quenching activity (SOQA) of human serum and blood biochemistry or life-style was evaluated. Healthy volunteers were recruited and carried out a measurement of SOQA by using electron paramagnetic resonance (EPR) and a questionnaire survey about a smoking. It was demonstrated that major quenchers of singlet oxygen in serum are proteins, and small molecular anti-oxidants relatively play a minor role. SOQA of whole sera showed no correlation with protein concentration, but positively correlated with SOQA of small molecular fraction. In vitro studies demonstrated that the decrease of sulfhydryl groups by NO or superoxide significantly attenuated SOQA of albumin. Together, these results may imply that the underlying oxidative condition in each individual influences both small molecular antioxidant states and the sulfhydryl content of serum proteins. SOQA of sera from women with a smoking history was significantly lower compared to non-smoking women, suggesting that the smoking habit impaired the defense mechanism against singlet oxygen.  相似文献   
137.
138.
139.
Cell-mediated immunity plays a crucial role in the control of many infectious diseases, necessitating the need for adjuvants that can augment cellular immune responses elicited by vaccines. It is well established that protection against one such disease, malaria, requires strong CD8(+) T cell responses targeted against the liver stages of the causative agent, Plasmodium spp. In this report we show that the dendritic cell-specific chemokine, dendritic cell-derived CC chemokine 1 (DC-CK1), which is produced in humans and acts on naive lymphocytes, can enhance Ag-specific CD8(+) T cell responses when coadministered with either irradiated Plasmodium yoelii sporozoites or a recombinant adenovirus expressing the P. yoelii circumsporozoite protein in mice. We further show that these enhanced T cell responses result in increased protection to malaria in immunized mice challenged with live P. yoelii sporozoites, revealing an adjuvant activity for DC-CK1. DC-CK1 appears to act preferentially on naive mouse lymphocytes, and its adjuvant effect requires IL-12, but not IFN-gamma or CD40. Overall, our results show for the first time an in vivo role for DC-CK1 in the establishment of primary T cell responses and indicate the potential of this chemokine as an adjuvant for vaccines against malaria as well as other diseases in which cellular immune responses are important.  相似文献   
140.
Amyloid precursor protein (APP), the precursor of Abeta, has been shown to function as a cell surface receptor that mediates neuronal cell death by anti-APP antibody. The c-Jun N-terminal kinase (JNK) can mediate various neurotoxic signals, including Abeta neurotoxicity. However, the relationship of APP-mediated neurotoxicity to JNK is not clear, partly because APP cytotoxicity is Abeta independent. Here we examined whether JNK is involved in APP-mediated neuronal cell death and found that: (i) neuronal cell death by antibody-bound APP was inhibited by dominant-negative JNK, JIP-1b and SP600125, the specific inhibitor of JNK, but not by SB203580 or PD98059; (ii) constitutively active (ca) JNK caused neuronal cell death and (iii) the pharmacological profile of caJNK-mediated cell death closely coincided with that of APP-mediated cell death. Pertussis toxin (PTX) suppressed APP-mediated cell death but not caJNK-induced cell death, which was suppressed by Humanin, a newly identified neuroprotective factor which inhibits APP-mediated cytotoxicity. In the presence of PTX, the PTX-resistant mutant of Galphao, but not that of Galphai, recovered the cytotoxic action of APP. These findings demonstrate that JNK is involved in APP-mediated neuronal cell death as a downstream signal transducer of Go.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号