首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2066篇
  免费   153篇
  国内免费   190篇
  2409篇
  2024年   5篇
  2023年   35篇
  2022年   78篇
  2021年   98篇
  2020年   72篇
  2019年   102篇
  2018年   87篇
  2017年   74篇
  2016年   100篇
  2015年   139篇
  2014年   133篇
  2013年   187篇
  2012年   184篇
  2011年   187篇
  2010年   99篇
  2009年   101篇
  2008年   112篇
  2007年   78篇
  2006年   77篇
  2005年   78篇
  2004年   57篇
  2003年   49篇
  2002年   38篇
  2001年   30篇
  2000年   34篇
  1999年   32篇
  1998年   21篇
  1997年   26篇
  1996年   7篇
  1995年   14篇
  1994年   15篇
  1993年   11篇
  1992年   15篇
  1991年   4篇
  1990年   6篇
  1989年   5篇
  1988年   3篇
  1987年   3篇
  1986年   4篇
  1985年   4篇
  1983年   1篇
  1982年   1篇
  1979年   2篇
  1976年   1篇
排序方式: 共有2409条查询结果,搜索用时 15 毫秒
41.
Li  Yanman  Qu  Ying  Wang  Yang  Bai  Xue  Tian  Geng  Liu  Zhirou  Li  Yonghua  Zhang  Kaiming 《Molecular biology reports》2019,46(6):6027-6037
Molecular Biology Reports - Begonia semperflorens (B. semperflorens), belonging to the family Begoniaceae, has now been widely cultivated worldwide and is famous for its ornamental plants with...  相似文献   
42.
Fan  Fangcheng  Yang  Mengzhu  Geng  Xiwen  Ma  Xiaoli  Sun  Haiji 《Neurochemical research》2019,44(8):1841-1850
Neurochemical Research - Restraint water-immersion stress (RWIS) consists of psychological and physical stimulation, and it has been utilized in the research of gastric mucosal damage. It has been...  相似文献   
43.
Plant Molecular Biology Reporter - Glycyrrhiza is a widely used traditional Chinese herb with medicinal value. Recently, however, Glycyrrhiza biodiversity has faced an unprecedented threat due to...  相似文献   
44.
KDM6B, also known as JMJD3, is a member of the family of histone lysine demethylase (KDMs), which is closely related to many types of cancers. However, its role and the underlying mechanisms in ovarian cancer remain unknown. Here we show that KDM6B is elevated in epithelial ovarian cancer and its expression level is closely related with metastasis and invasion. In addition, survival analysis showed that high expression of KDM6B was associated with low overall survival in ovarian cancer patients. Overexpression of KDM6B in epithelial ovarian cancer cells promoted proliferation, epithelial-mesenchymal transition (EMT), migration and invasion in vitro, and enhanced metastatic capacities in vivo. On the contrary, silencing KDM6B in invasive and metastatic ovarian cancer cells inhibited these processes. Mechanistically, we found that KDM6B exerts its function by modulating the transforming growth factor-β1 (TGF-β1) expression, and TGF-β1 signal pathway inhibitor LY2157299 significantly inhibited KDM6B-induced proliferation, migration, metastasis, and EMT in ovarian cancer cells. Our findings, for the first time, reveal the pivotal role of KDM6B in the invasion and metastatic behavior of epithelial ovarian cancer. Thus, targeting KDM6B may be a useful strategy to interfere with these behaviors of epithelial ovarian cancer.  相似文献   
45.
The inhibitor of growth 4 (ING4) is known as a tumor suppressor. The expressions of ING4 were markedly reduced in human renal clear cell carcinoma (ccRCC) tissues. However, the role of ING4 in renal cell carcinoma (RCC) remains unknown. The aim of the current study was to detect the ING4 expression level and its potential role in human RCC cell lines. Our results showed that ING4 was lowly expressed in human RCC cell lines compared with that in proximal tubular cell line. Ectopic overexpression of ING4 inhibited the proliferation, migration, and invasion properties, and as well as prevented epithelial-mesenchymal transition (EMT) phenotype of RCC cells. In addition, ING4 overexpression induced cell apoptosis and autophagy in RCC cells. Furthermore, ING4 overexpression suppressed the activation of PI3K/Akt pathway in RCC cells. The activator of PI3K/Akt, insulin-like growth factor 1, abolished the effects of ING4 on RCC cells. These findings indicated that ING4 presented anticancer activity in RCC cells. The effects of ING4 on RCC cells were mediated by regulating the PI3K/Akt pathway. These findings suggested that ING4 could be used for gene therapy of RCC.  相似文献   
46.
47.
EIF1A encodes a translation initiation factor in eukaryocyte and aberrant expression of EIF1A is deemed to be associated with dysfunctions in intracranial diseases. The goal of this research was to explore the impacts of EIF1A on progression of human pituitary adenoma (PA). We employed immunohistochemistry to assess the expression of EIF1A in PA and para-carcinoma tissues. After constructing EIF1A-knockdown cell models via lentivirus infection, we examined cell proliferation through CCK-8 assay and Celigo cell counting assay. Flow cytometry was utilized to detect cell apoptosis and the migration ability of experimental cells was estimated using wound-healing assay and Transwell assay. The activity of the apoptosis-related factor, Caspase 3, was also examined via Caspase 3 activity assay. Lastly, in vivo xenograft mouse models were established to verify findings derived from in vitro cell models. Our results affirmed upregulation of EIF1A in PA cells and revealed that depletion of EIF1A could seriously limit cell proliferation and weaken the capacity of cell migration, and also enhance apoptosis of tumor cells. Mechanistically, degradation in cell growth mediated by EIF1A knockdown may involve in activation of MAPK signaling but inactivation of PI3K/AKT signaling pathway. This study indicates EIF1A plays a prominent role in facilitating tumor cell proliferation and migration which may further contribute to PA progression.Key words: EIF1A, Pituitary adenoma, Cell proliferation, Cell migration, MAPK  相似文献   
48.
49.
ObjectivesThe rats are crucial animal models for the basic medical researches. Rat embryonic stem cells (ESCs), which are widely studied, can self‐renew and exhibit pluripotency in long‐term culture, but the mechanism underlying how they exit pluripotency remains obscure. To investigate the key modulators on pluripotency exiting in rat ESCs, we perform genome‐wide screening using a unique rat haploid system.Materials and MethodsRat haploid ESCs (haESCs) enable advances in the discovery of unknown functional genes owing to their homozygous and pluripotent characteristics. REX1 is a sensitive marker for the naïve pluripotency that is often utilized to monitor pluripotency exit, thus rat haESCs carrying a Rex1‐GFP reporter are used for genetic screening. Genome‐wide mutations are introduced into the genomes of rat Rex1‐GFP haESCs via piggyBac transposon, and differentiation‐retarded mutants are obtained after random differentiation selection. The exact mutations are elucidated by high‐throughput sequencing and bioinformatic analysis. The role of candidate mutation is validated in rat ESCs by knockout and overexpression experiments, and the phosphorylation of ERK1/2 (p‐ERK1/2) is determined by western blotting.ResultsHigh‐throughput sequencing analysis reveals numerous insertions related to various pathways affecting random differentiation. Thereafter, deletion of Thop1 (one candidate gene in the screened list) arrests the differentiation of rat ESCs by inhibiting the p‐ERK1/2, whereas overexpression of Thop1 promotes rat ESCs to exit from pluripotency.ConclusionsOur findings provide an ideal tool to study functional genomics in rats: a homozygous haploid system carrying a pluripotency reporter that facilitates robust discovery of the mechanisms involved in the self‐renewal or pluripotency of rat ESCs.

Differentiation of pluripotent rat embryonic stem cells (ESCs) in vitro is difficult to achieve for unknown mechanisms. Rat haploid ESCs (haESCs) have been validated as a powerful tool to target unknown functional genes and pathways based on homozygous genetic screening. Xu et al. utilized Rex1‐GFP labelled‐rat haESCs to conduct genome‐scale screening of genes modulating pluripotency exiting. Validation experiments showed that Thop1 (one of the screened out genes) played very important roles in the random differentiation of rat ESCs in vitro via modulating phosphorylation of ERK.  相似文献   
50.
Dopamine receptors are involved in several immunological diseases. We previously found that dopamine D3 receptor (D3R) on mast cells showed a high correlation with disease activity in patients with rheumatoid arthritis, but the mechanism remains largely elusive. In this study, a murine collagen-induced arthritis (CIA) model was employed in both DBA/1 mice and D3R knockout mice. Here, we revealed that D3R-deficient mice developed more severe arthritis than wild-type mice. D3R suppressed mast cell activation in vivo and in vitro via a Toll-like receptor 4 (TLR4)-dependent pathway. Importantly, D3R promoted LC3 conversion to accelerate ubiquitin-labeled TLR4 degradation. Mechanistically, D3R inhibited mTOR and AKT phosphorylation while enhancing AMPK phosphorylation in activated mast cells, which was followed by autophagy-dependent protein degradation of TLR4. In total, we found that D3R on mast cells alleviated inflammation in mouse rheumatoid arthritis through the mTOR/AKT/AMPK-LC3-ubiquitin-TLR4 signaling axis. These findings identify a protective function of D3R against excessive inflammation in mast cells, expanding significant insight into the pathogenesis of rheumatoid arthritis and providing a possible target for future treatment.Subject terms: Immunological disorders, Rheumatic diseases  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号