首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   978篇
  免费   83篇
  2023年   2篇
  2022年   4篇
  2021年   5篇
  2020年   5篇
  2019年   4篇
  2018年   14篇
  2017年   4篇
  2016年   21篇
  2015年   32篇
  2014年   30篇
  2013年   56篇
  2012年   83篇
  2011年   84篇
  2010年   35篇
  2009年   51篇
  2008年   78篇
  2007年   92篇
  2006年   73篇
  2005年   67篇
  2004年   72篇
  2003年   66篇
  2002年   52篇
  2001年   3篇
  2000年   6篇
  1999年   6篇
  1998年   8篇
  1997年   5篇
  1996年   3篇
  1995年   6篇
  1994年   7篇
  1993年   4篇
  1992年   9篇
  1990年   2篇
  1989年   5篇
  1988年   2篇
  1987年   2篇
  1986年   3篇
  1984年   4篇
  1983年   3篇
  1982年   4篇
  1981年   8篇
  1980年   4篇
  1979年   5篇
  1978年   7篇
  1977年   5篇
  1975年   3篇
  1974年   2篇
  1973年   6篇
  1972年   2篇
  1969年   2篇
排序方式: 共有1061条查询结果,搜索用时 406 毫秒
991.
The Ras superfamily of small GTPases is a large family of switch-like proteins that control diverse cellular functions, and their deregulation is associated with multiple disease processes. When bound to GTP they adopt a conformation that interacts with effector proteins, whereas the GDP-bound state is generally biologically inactive. GTPase activating proteins (GAPs) promote hydrolysis of GTP, thus impeding the biological activity of GTPases, whereas guanine nucleotide exchange factors (GEFs) promote exchange of GDP for GTP and activate GTPase proteins. A number of methods have been developed to assay GTPase nucleotide hydrolysis and exchange, as well as the activity of GAPs and GEFs. The kinetics of these reactions are often studied with purified proteins and fluorescent nucleotide analogs, which have been shown to non-specifically impact hydrolysis and exchange. Most GAPs and GEFs are large multidomain proteins subject to complex regulation that is challenging to reconstitute in vitro. In cells, the activities of full-length GAPs or GEFs are typically assayed indirectly on the basis of nucleotide loading of the cognate GTPase, or by exploiting their interaction with effector proteins. Here, we describe a recently developed real-time NMR method to assay kinetics of nucleotide exchange and hydrolysis reactions by direct monitoring of nucleotide-dependent structural changes in an isotopically labeled GTPase. The unambiguous readout of this method makes it possible to precisely measure GAP and GEF activities from extracts of mammalian cells, enabling studies of their catalytic and regulatory mechanisms. We present examples of NMR-based assays of full-length GAPs and GEFs overexpressed in mammalian cells.  相似文献   
992.

Background

Dengue is the most important mosquito-borne viral disease. In the absence of specific drugs or vaccines, control focuses on suppressing the principal mosquito vector, Aedes aegypti, yet current methods have not proven adequate to control the disease. New methods are therefore urgently needed, for example genetics-based sterile-male-release methods. However, this requires that lab-reared, modified mosquitoes be able to survive and disperse adequately in the field.

Methodology/Principal Findings

Adult male mosquitoes were released into an uninhabited forested area of Pahang, Malaysia. Their survival and dispersal was assessed by use of a network of traps. Two strains were used, an engineered ‘genetically sterile’ (OX513A) and a wild-type laboratory strain, to give both absolute and relative data about the performance of the modified mosquitoes. The two strains had similar maximum dispersal distances (220 m), but mean distance travelled of the OX513A strain was lower (52 vs. 100 m). Life expectancy was similar (2.0 vs. 2.2 days). Recapture rates were high for both strains, possibly because of the uninhabited nature of the site.

Conclusions/Significance

After extensive contained studies and regulatory scrutiny, a field release of engineered mosquitoes was safely and successfully conducted in Malaysia. The engineered strain showed similar field longevity to an unmodified counterpart, though in this setting dispersal was reduced relative to the unmodified strain. These data are encouraging for the future testing and implementation of genetic control strategies and will help guide future field use of this and other engineered strains.  相似文献   
993.
M102AD is the new designation for a Streptococcus mutans phage described in 1993 as phage M102. This change was necessitated by the genome analysis of another S. mutans phage named M102, which revealed differences from the genome sequence reported here. Additional host range analyses confirmed that S. mutans phage M102AD infects only a few serotype c strains. Phage M102AD adsorbed very slowly to its host, and it cannot adsorb to serotype e and f strains of S. mutans. M102AD adsorption was blocked by c-specific antiserum. Phage M102AD also adsorbed equally well to heat-treated and trypsin-treated cells, suggesting carbohydrate receptors. Saliva and polysaccharide production did not inhibit plaque formation. The genome of this siphophage consisted of a linear, double-stranded, 30,664-bp DNA molecule, with a GC content of 39.6%. Analysis of the genome extremities indicated the presence of a 3'-overhang cos site that was 11 nucleotides long. Bioinformatic analyses identified 40 open reading frames, all in the same orientation. No lysogeny-related genes were found, indicating that phage M102AD is strictly virulent. No obvious virulence factor gene candidates were found. Twelve proteins were identified in the virion structure by mass spectrometry. Comparative genomic analysis revealed a close relationship between S. mutans phages M102AD and M102 as well as with Streptococcus thermophilus phages. This study also highlights the importance of conducting research with biological materials obtained from recognized microbial collections.  相似文献   
994.
The diversity of the microbial community on cow teat skin was evaluated using a culture-dependent method based on the use of different dairy-specific media, followed by the identification of isolates by 16S rRNA gene sequencing. This was combined with a direct molecular approach by cloning and 16S rRNA gene sequencing. This study highlighted the large diversity of the bacterial community that may be found on teat skin, where 79.8% of clones corresponded to various unidentified species as well as 66 identified species, mainly belonging to those commonly found in raw milk (Enterococcus, Pediococcus, Enterobacter, Pantoea, Aerococcus, and Staphylococcus). Several of them, such as nonstarter lactic acid bacteria (NSLAB), Staphylococcus, and Actinobacteria, may contribute to the development of the sensory characteristics of cheese during ripening. Therefore, teat skin could be an interesting source or vector of biodiversity for milk. Variations of microbial counts and diversity between the farms studied have been observed. Moreover, Staphylococcus auricularis, Staphylococcus devriesei, Staphylococcus arlettae, Streptococcus bovis, Streptococcus equinus, Clavibacter michiganensis, Coprococcus catus, or Arthrobacter gandavensis commensal bacteria of teat skin and teat canal, as well as human skin, are not common in milk, suggesting that there is a breakdown of microbial flow from animal to milk. It would then be interesting to thoroughly study this microbial flow from teat to milk.  相似文献   
995.
Lipids II found in some Gram-positive bacteria were prepared in radioactive form from l-lysine-containing UDP-MurNAc-pentapeptide. The specific lateral chains of Enterococcus faecalis, Enterococcus faecium and Staphylococcus aureus (di-L-alanine, D-isoasparagine, and pentaglycine, respectively) were introduced by chemical peptide synthesis using the Fmoc chemistry. The branched nucleotides obtained were converted into the corresponding lipids II by enzymatic synthesis using the MraY and MurG enzymes. All of the lipids were hydrolysed by Escherichia coli colicin M at approximately the same rate as the meso-diaminopimelate-containing lipid II found in Gram-negative bacteria, thereby opening the way to the use of this enzyme as a broad spectrum antibacterial agent.  相似文献   
996.
We investigated here the specific role of CGI-58 in the regulation of energy metabolism in skeletal muscle. We first examined CGI-58 protein expression in various muscle types in mice, and next modulated CGI-58 expression during overexpression and knockdown studies in human primary myotubes and evaluated the consequences on oxidative metabolism. We observed a preferential expression of CGI-58 in oxidative muscles in mice consistent with triacylglycerol hydrolase activity. We next showed by pulse-chase that CGI-58 overexpression increased by more than 2-fold the rate of triacylglycerol (TAG) hydrolysis, as well as TAG-derived fatty acid (FA) release and oxidation. Oppositely, CGI-58 silencing reduced TAG hydrolysis and TAG-derived FA release and oxidation (-77%, P < 0.001), whereas it increased glucose oxidation and glycogen synthesis. Interestingly, modulations of CGI-58 expression and FA release are reflected by changes in pyruvate dehydrogenase kinase 4 gene expression. This regulation involves the activation of the peroxisome proliferator activating receptor-δ (PPARδ) by lipolysis products. Altogether, these data reveal that CGI-58 plays a limiting role in the control of oxidative metabolism by modulating FA availability and the expression of PPARδ-target genes, and highlight an important metabolic function of CGI-58 in skeletal muscle.  相似文献   
997.
Recognition of microbial molecules by mammalian host receptors is essential to mount an immune response. Hexaacylated LPS is the prototypic example of a bacterial molecule recognized by the receptor complex TLR4/MD-2 with its lipid A moiety, whereas bacterial lipopeptides are recognized by TLR2. Here we show that a series of synthetic triacylated lipid A-like molecules are weak Toll-like receptor (TLR) agonists (mainly TLR2 agonists) but very potent TLR4/MD-2 antagonists (submicromolar range). Not only do they block human cell responses to LPS but also to whole gram-negative bacteria, and they inhibit the phagocytosis of gram-negative bacteria. These compounds may represent promising immunomodulatory agents.  相似文献   
998.
999.
Efficient supply of new histones during DNA replication is critical to restore chromatin organization and maintain genome function. The histone chaperone anti-silencing function 1 (Asf1) serves a key function in providing H3.1-H4 to CAF-1 for replication-coupled nucleosome assembly. We identify Codanin-1 as a novel interaction partner of Asf1 regulating S-phase histone supply. Mutations in Codanin-1 can cause congenital dyserythropoietic anaemia type I (CDAI), characterized by chromatin abnormalities in bone marrow erythroblasts. Codanin-1 is part of a cytosolic Asf1-H3.1-H4-Importin-4 complex and binds directly to Asf1 via a conserved B-domain, implying a mutually exclusive interaction with the chaperones CAF-1 and HIRA. Codanin-1 depletion accelerates the rate of DNA replication and increases the level of chromatin-bound Asf1, suggesting that Codanin-1 guards a limiting step in chromatin replication. Consistently, ectopic Codanin-1 expression arrests S-phase progression by sequestering Asf1 in the cytoplasm, blocking histone delivery. We propose that Codanin-1 acts as a negative regulator of Asf1 function in chromatin assembly. This function is compromised by two CDAI mutations that impair complex formation with Asf1, providing insight into the molecular basis for CDAI disease.  相似文献   
1000.
Fluorescence microscopy has provided a route to qualitatively analyze features of nuclear structures and chromatin domains with increasing resolution. However, it is becoming increasingly important to develop tools for quantitative analysis. Here, we present an automated method to quantitatively determine the enrichment of several endogenous factors, immunostained in pericentric heterochromatin domains in mouse cells. We show that this method permits an unbiased characterization of changes in the enrichment of several factors with statistical significance from a large number of nuclei. Furthermore, the nuclei can be sorted according to the enrichment value of these factors. This method should prove useful to monitor events related to changes in the amount, rather than the presence or absence, of any factor. By adapting a few parameters, it could be extended to other nuclear structures and the benefit of using available software will permit its use in many biological labs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号