首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   978篇
  免费   83篇
  2023年   2篇
  2022年   4篇
  2021年   5篇
  2020年   5篇
  2019年   4篇
  2018年   14篇
  2017年   4篇
  2016年   21篇
  2015年   32篇
  2014年   30篇
  2013年   56篇
  2012年   83篇
  2011年   84篇
  2010年   35篇
  2009年   51篇
  2008年   78篇
  2007年   92篇
  2006年   73篇
  2005年   67篇
  2004年   72篇
  2003年   66篇
  2002年   52篇
  2001年   3篇
  2000年   6篇
  1999年   6篇
  1998年   8篇
  1997年   5篇
  1996年   3篇
  1995年   6篇
  1994年   7篇
  1993年   4篇
  1992年   9篇
  1990年   2篇
  1989年   5篇
  1988年   2篇
  1987年   2篇
  1986年   3篇
  1984年   4篇
  1983年   3篇
  1982年   4篇
  1981年   8篇
  1980年   4篇
  1979年   5篇
  1978年   7篇
  1977年   5篇
  1975年   3篇
  1974年   2篇
  1973年   6篇
  1972年   2篇
  1969年   2篇
排序方式: 共有1061条查询结果,搜索用时 15 毫秒
51.
To investigate how the complex organization of heterochromatin is reproduced at each replication cycle, we examined the fate of HP1-rich pericentric domains in mouse cells. We find that replication occurs mainly at the surface of these domains where both PCNA and chromatin assembly factor 1 (CAF-1) are located. Pulse-chase experiments combined with high-resolution analysis and 3D modeling show that within 90 min newly replicated DNA become internalized inside the domain. Remarkably, during this time period, a specific subset of HP1 molecules (alpha and gamma) coinciding with CAF-1 and replicative sites is resistant to RNase treatment. Furthermore, these replication-associated HP1 molecules are detected in Suv39 knockout cells, which otherwise lack stable HP1 staining at pericentric heterochromatin. This replicative pool of HP1 molecules disappears completely following p150CAF-1 siRNA treatment. We conclude that during replication, the interaction of HP1 with p150CAF-1 is essential to promote delivery of HP1 molecules to heterochromatic sites, where they are subsequently retained by further interactions with methylated H3-K9 and RNA.  相似文献   
52.
Identification and characterization of anion channel genes in plants represent a goal for a better understanding of their central role in cell signaling, osmoregulation, nutrition, and metabolism. Though channel activities have been well characterized in plasma membrane by electrophysiology, the corresponding molecular entities are little documented. Indeed, the hydrophobic protein equipment of plant plasma membrane still remains largely unknown, though several proteomic approaches have been reported. To identify new putative transport systems, we developed a new proteomic strategy based on mass spectrometry analyses of a plasma membrane fraction enriched in hydrophobic proteins. We produced from Arabidopsis cell suspensions a highly purified plasma membrane fraction and characterized it in detail by immunological and enzymatic tests. Using complementary methods for the extraction of hydrophobic proteins and mass spectrometry analyses on mono-dimensional gels, about 100 proteins have been identified, 95% of which had never been found in previous proteomic studies. The inventory of the plasma membrane proteome generated by this approach contains numerous plasma membrane integral proteins, one-third displaying at least four transmembrane segments. The plasma membrane localization was confirmed for several proteins, therefore validating such proteomic strategy. An in silico analysis shows a correlation between the putative functions of the identified proteins and the expected roles for plasma membrane in transport, signaling, cellular traffic, and metabolism. This analysis also reveals 10 proteins that display structural properties compatible with transport functions and will constitute interesting targets for further functional studies.  相似文献   
53.
The plant gene enod40 is highly conserved among legumes and also present in various non-legume species. It is presumed to play a central regulatory role in the Rhizobium–legume interaction, being expressed well before the initiation of cortical cell divisions resulting in nodule formation. Two small peptides encoded by enod40 mRNA as well as its secondary structure have been shown to be key elements in the signalling processes underlying nodule organogenesis. Here results concerning the secondary structure of mRNA of enod40 in soybean are presented. This study combined a theoretical approach, involving structure prediction and comparison, as well as structure probing. Our study indicates five conserved domains in enod40 mRNA among numerous leguminous species. Structure comparison suggests that some domains are also conserved in non-leguminous species and that an additional domain exists that was found only in leguminous species developing indeterminate nodules. Enzymatic and chemical probing data support the structure for three of the domains, and partially for the remaining two. The rest of the molecule appears to be less structured. Some of the domains include motifs, such as U-containing internal loops and bulges, which seem to be conserved. Therefore, they might be involved in the regulatory role of enod40 RNA.  相似文献   
54.
In the adult cricket brain, a cluster of neuroblasts produces new interneurons that integrate into the mushroom body (MB), the main associative structure for multisensory information of the insect brain. In previous study we showed the antagonist role of the two morphogenetic hormones, juvenile hormone (JH) and ecdysone, on the regulation of adult MB neurogenesis in vivo. In order to examine whether these hormones act directly on neural progenitor cells, we developed an organotypic culture of MB cortices. Cell proliferation was assessed by 5-bromo, 2'-deoxyuridine (BrdU) incorporation. We showed that JH increased mushroom body neuroblast (MBNb) proliferation, confirming the mitogenic effect of JH observed in vivo. By contrast, ecdysone did not affect the amount of BrdU-labeled nuclei, suggesting that the inhibitory effect observed in vivo probably proceeded from an indirect pathway. We then examined the role of growth factors known to stimulate neural stem cell/progenitor cell proliferation in vertebrates. As shown by calcium imaging, MBNb only expressed functional receptors for insulin whereas mature interneurons responded to IGF-I and bFGF. Both insulin (10 microg/ml) and IGF-I (10 ng/ml) enhanced MB progenitor cell proliferation in culture, although the insulin effect was more pronounced. This effect was abolished when an inhibitor of polyamine biosynthesis was present in the medium, suggesting a link between polyamines and the insulin signaling pathway. By contrast, bFGF (20-200 ng/ml) failed to stimulate MBNb proliferation. Our results point to conserved and divergent mechanisms between vertebrates and invertebrates in the regulation of adult neural progenitor cell proliferation.  相似文献   
55.
Human EED, a member of the superfamily of WD-40 repeat proteins and of the Polycomb group proteins, has been identified as a cellular partner of the human immunodeficiency virus type 1 (HIV-1) matrix (MA) protein (R. Peytavi et al., J. Biol. Chem. 274:1635-1645, 1999). In the present study, EED was found to interact with HIV-1 integrase (IN) both in vitro and in vivo in yeast. In vitro, data from mutagenesis studies, pull-down assays, and phage biopanning suggested that EED-binding site(s) are located in the C-terminal domain of IN, between residues 212 and 264. In EED, two putative discrete IN-binding sites were mapped to its N-terminal moiety, at a distance from the MA-binding site, but EED-IN interaction also required the integrity of the EED last two WD repeats. EED showed an apparent positive effect on IN-mediated DNA integration reaction in vitro, in a dose-dependent manner. In situ analysis by immunoelectron microscopy (IEM) of cellular distribution of IN and EED in HIV-1-infected cells (HeLa CD4(+) cells or MT4 lymphoid cells) showed that IN and EED colocalized in the nucleus and near nuclear pores, with maximum colocalization events occurring at 6 h postinfection (p.i.). Triple colocalizations of IN, EED, and MA were also observed in the nucleoplasm of infected cells at 6 h p.i., suggesting the ocurrence of multiprotein complexes involving these three proteins at early steps of the HIV-1 virus life cycle. Such IEM patterns were not observed with a noninfectious, envelope deletion mutant of HIV-1.  相似文献   
56.
PURPOSE: The present study aimed at investigating if 2'-2' difluorodeoxycytidine (dFdC) radioenhancement was mediated by an effect on induction and/or repair of radiation-induced DNA DSBs and chromosome aberrations in cells with different intrinsic radiosensitivity. METHODS: Confluent human head and neck squamous cell carcinoma cell lines designated SCC61 and SQD9 were treated with 5 microM dFdC for 3 or 24 h prior to irradiation. DNA DSBs induction and repair were analyzed by PFGE. Radiation-induced chromosome aberrations were examined with a FISH technique. RESULTS: In both cell lines, dFdC did not modify radiation-induced DNA DSBs in a dose range between 0 and 40 Gy. After a single dose of 40 Gy, dFdC affected neither the kinetic of repair nor the residual amount of DNA DSBs up to 4 h after irradiation. Whereas dFdC did not increase the induction of chromosome aberrations, after a single dose of 5 Gy, the percentage of aberrant cells and the number of aberrations per aberrant cells were significantly higher in combination with dFdC. CONCLUSION: Our data suggest that under experimental conditions yielding substantial radioenhancement, dFdC decreases the repair of genomic lesions inducing secondary chromosome breaks but has no effect on DNA DSBs repair as measured by PFGE.  相似文献   
57.
Oxidative stress results from the attack by free radicals of several cellular targets (proteins, DNA and lipids). The cell equilibrium is a direct consequence of the pro-/antioxidant balance. In order to understand the physiological processes involved in oxidative stress, we followed oxidation of unsaturated lipids using a biomimetic system: Langmuir monolayers. The oxidation mode chosen was UV-irradiation and the lipid model was a polyunsaturated phospholipid: 1,2-dilinoleoyl-sn-glycero-3-phosphocholine (DLPC). The monomolecular film technique was used to measure membrane rheology before and after UV-irradiation. We showed that the UV-irradiation of a DLPC monomolecular film led to a molecular area and surface elasticity modulus decrease that attests to the apparition of new molecular species at the air-water interface. The antioxidant effect of a synthetic plasmalogen (1-O-(1'-(Z)-hexadecenyl)-2-O-oleoyl-sn-glycero-3-phosphocholine or P(PLM)OPE) was tested on the oxidation of DLPC. Indeed, for about 25% mol P(PLM)OPE in mixed DLPC/P(PLM)OPE monolayers, a complete inhibition of the molecular area and the surface elasticity modulus decreases was observed in our experimental conditions. Lower P(PLM)OPE quantities delayed but did not prevent the DLPC oxidation in mixed monolayers.  相似文献   
58.
59.
The hli genes, present in cyanobacteria, algae and vascular plants, encode small proteins [high-light-inducible polypeptides (HLIPs)] with a single membrane-spanning alpha-helix related to the first and third helices of eukaryotic chlorophyll a/b-binding proteins. The HLIPs are present in low amounts in low light and they accumulate transiently at high light intensities. We are investigating the function of those polypeptides in a Synechocystis PCC6803 mutant lacking four of the five hli genes. Growth of the quadruple hli mutant was adversely affected by high light intensities. The most striking effect of the quadruple hli mutation was an alteration of cell pigmentation. Pigment changes associated with cell acclimation to increasing light intensity [i.e. decrease in light-harvesting pigments, accumulation of the carotenoid myxoxanthophyll and decrease in photosystem I (PSI)-associated chlorophylls] were strongly exacerbated in the quadruple hli mutant, resulting in yellowish cultures that bleached in high light and died as light intensities exceeded (>500 micromol photon m(-2) s(-1)). However, these pigment changes were not associated with an inhibition of photosynthesis, as probed by in vivo chlorophyll fluorescence, photoacoustic and O(2)-evolution measurements. On the contrary, the HLIP deficiency was accompanied by a stimulation of the photochemical activity, especially in high-light-grown cells. Western blot analyses revealed that the PSI reaction center level (PsaA/B) was noticeably reduced in the quadruple hli mutant relative to the wild type, whereas the abundance of the PSII reaction center protein D1 was comparatively little affected. The hli mutations did not enhance photoinhibition and photooxidation when cells were exposed over a short term to a very high light intensity. Together, the results of this study indicate that HLIPs are critical in the adaptation of the cyanobacterium to variations in light intensity. The data are consistent with the idea that HLIPs are involved, through a direct or indirect means, in nonphotochemical dissipation of absorbed light energy.  相似文献   
60.
Activation of primary human T cells by anti-CD3 and interleukin-2 resulted in partial processing of procaspase-3 in activated nonapoptotic (Delta Psi(m)high) CD8(+) T cells but not in CD4(+) T cells. Apical caspases-8 and -9 were not activated, and Bid was not processed to truncated Bid. Boc-D.fmk, a broad spectrum caspase inhibitor, did not prevent this process, whereas GF.dmk, a selective inhibitor of dipeptidyl peptidase I, was effective. Dipeptidyl peptidase I is required for the activation of granule-associated serine proteases. It is enriched in the cytolytic granules of cytotoxic lymphocytes, where it promotes the proteolytic activation of progranzymes A and B. Inhibition of granzyme B (GrB)-like serine proteases by Z-AAD.cmk prevented partial processing of procapase-3, whereas inhibition of GrA activity by D-FPR.cmk had no effect. Specific inhibitors of other lysosomal proteases such as cathepsins B, L, and D did not interfere in this event. Patients with Chediak-Higashi syndrome or with perforin deficiency also displayed partial processing of procaspase-3, excluding the involvement of granule exocytosis for the delivery of the serine protease in cause. The p20/p12 processing pattern of procaspase-3 in our model points to GrB, the sole serine protease with caspase activity. Small amounts of GrB were indeed exported from cytolytic granules to the cytosol of a significant fraction of GrB-positive cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号