首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8451篇
  免费   618篇
  国内免费   5篇
  9074篇
  2023年   43篇
  2022年   93篇
  2021年   195篇
  2020年   131篇
  2019年   123篇
  2018年   184篇
  2017年   150篇
  2016年   282篇
  2015年   401篇
  2014年   462篇
  2013年   572篇
  2012年   695篇
  2011年   713篇
  2010年   440篇
  2009年   379篇
  2008年   496篇
  2007年   516篇
  2006年   504篇
  2005年   417篇
  2004年   383篇
  2003年   302篇
  2002年   333篇
  2001年   77篇
  2000年   55篇
  1999年   58篇
  1998年   89篇
  1997年   36篇
  1996年   51篇
  1995年   52篇
  1994年   49篇
  1993年   48篇
  1992年   40篇
  1991年   40篇
  1990年   32篇
  1989年   36篇
  1988年   32篇
  1987年   43篇
  1986年   29篇
  1985年   39篇
  1984年   36篇
  1983年   46篇
  1982年   34篇
  1981年   35篇
  1980年   23篇
  1979年   23篇
  1978年   19篇
  1977年   34篇
  1976年   21篇
  1973年   14篇
  1964年   14篇
排序方式: 共有9074条查询结果,搜索用时 15 毫秒
71.
A novel antimicrobial enzyme system, the Curvularia haloperoxidase system, was examined with the aim of elucidating its mechanism of antibacterial action. Escherichia coli strain MG1655 was stressed with sublethal concentrations of the enzyme system, causing a temporary arrest of growth. The expression of genes altered upon exposure to the Curvularia haloperoxidase system was analyzed by using DNA microarrays. Only a limited number of genes were involved in the response to the Curvularia haloperoxidase system. Among the induced genes were the ibpA and ibpB genes encoding small heat shock proteins, a gene cluster of six genes (b0301-b0306) of unknown function, and finally, cpxP, a member of the Cpx pathway. Knockout mutants were constructed with deletions in b0301-b0306, cpxP, and cpxARP, respectively. Only the mutant lacking cpxARP was significantly more sensitive to the enzyme system than was the wild type. Our results demonstrate that DNA microarray technology cannot be used as the only technique to investigate the mechanisms of action of new antimicrobial compounds. However, by combining DNA microarray analysis with the subsequent creation of knockout mutants, we were able to pinpoint one of the specific responses of E. coli--namely, the Cpx pathway, which is important for managing the stress response from the Curvularia haloperoxidase system.  相似文献   
72.
Paenibacillus larvae, the etiological agent of the globally occurring epizootic American Foulbrood (AFB) of honey bees, causes intestinal infections in honey bee larvae which develop into systemic infections inevitably leading to larval death. Massive brood mortality might eventually lead to collapse of the entire colony. Molecular mechanisms of host-microbe interactions in this system and of differences in virulence between P. larvae genotypes are poorly understood. Recently, it was demonstrated that the degradation of the peritrophic matrix lining the midgut epithelium is a key step in pathogenesis of P. larvae infections. Here, we present the isolation and identification of PlCBP49, a modular, chitin-degrading protein of P. larvae and demonstrate that this enzyme is crucial for the degradation of the larval peritrophic matrix during infection. PlCBP49 contains a module belonging to the auxiliary activity 10 (AA10, formerly CBM33) family of lytic polysaccharide monooxygenases (LPMOs) which are able to degrade recalcitrant polysaccharides. Using chitin-affinity purified PlCBP49, we provide evidence that PlCBP49 degrades chitin via a metal ion-dependent, oxidative mechanism, as already described for members of the AA10 family. Using P. larvae mutants lacking PlCBP49 expression, we analyzed in vivo biological functions of PlCBP49. In the absence of PlCBP49 expression, peritrophic matrix degradation was markedly reduced and P. larvae virulence was nearly abolished. This indicated that PlCBP49 is a key virulence factor for the species P. larvae. The identification of the functional role of PlCBP49 in AFB pathogenesis broadens our understanding of this important family of chitin-binding and -degrading proteins, especially in those bacteria that can also act as entomopathogens.  相似文献   
73.
Objective: To describe and evaluate relationships between body mass index (BMI) and blood pressure, cholesterol, high‐density lipoprotein‐cholesterol (HDL‐C), and hypertension and dyslipidemia. Research Methods and Procedures: A national survey of adults in the United States that included measurement of height, weight, blood pressure, and lipids (National Health and Nutrition Examination Survey III 1988–1994). Crude age‐adjusted, age‐specific means and proportions, and multivariate odds ratios that quantify the association between hypertension or dyslipidemia and BMI, controlling for race/ethnicity, education, and smoking habits are presented. Results: More than one‐half of the adult population is overweight (BMI of 25 to 29.9) or obese (BMI of ≥30). The prevalence of high blood pressure and mean levels of systolic and diastolic blood pressure increased as BMI increased at ages younger than 60 years. The prevalence of high blood cholesterol and mean levels of cholesterol were higher at BMI levels over 25 rather than below 25 but did not increase consistently with increasing BMI above 25. Rates of low HDL‐C increased and mean levels of HDL‐C decreased as levels of BMI increased. The associations of BMI with high blood pressure and abnormal lipids were statistically significant after controlling for age, race or ethnicity, education, and smoking; odds ratios were highest at ages 20 to 39 but most trends were apparent at older ages. Within BMI categories, hypertension was more prevalent and HDL‐C levels were higher in black than white or Mexican American men and women. Discussion: These data quantify the strong associations of BMI with hypertension and abnormal lipids. They are consistent with the national emphasis on prevention and control of overweight and obesity and indicate that blood pressure and cholesterol measurement and control are especially important for overweight and obese people.  相似文献   
74.

Background and aims

Herbaspirillum seropedicae (Hs) Z67 a diazotrophic endophyte was genetically engineered for secretion of 2-keto-D-gluconic acid by heterologous expression of genes for pqq synthesis and gluconate dehydrogenase to study its beneficial effect on plants.

Methods

Two plasmids, pJNK5, containing a 5.1 Kb pqq gene cluster of Acinetobacter calcoaceticus and pJNK6, carrying in addition the Pseudomonas putida KT2440 gluconate dehydrogenase (gad) operon were constructed in pUCPM18Gmr under Plac promoter. H. seropedicae Z67 transformants were monitored for P and K solubilization, cadmium (Cd) tolerance and rice growth promotion.

Results

Hs (pJNK5) secreted 23.5 mM gluconic acid and Hs (pJNK6) secreted 3.79 mM gluconic acid and 15.8 mM 2-ketogluconic acid respectively. Under aerobic conditions, Hs (pJNK5) and Hs (pJNK6) solubilized 239.7 μM and 457.7 μM P on HEPES rock phosphate and, 76.7 μM and 222.7 μM K on HRPF (feldspar), respectively, in minimal medium containing 50 mM glucose. Under N free minimal medium, similar effects of P and K solubilization were obtained. Hs (pJNK5) and Hs (pJNK6) inoculation increased the biomass, N, P, K content of rice plants (Gujarat – 17). These plants also accumulated 0.73 ng/g PQQ, and had improved growth and tolerance to CdCl2.

Conclusions

Incorporation of pqq and gad gene clusters in H. seropedicae Z67 imparted additional plant growth promoting traits of P and K solubilization and ability to alleviate Cd toxicity to the host plant.
  相似文献   
75.
During sequence analysis of the first intron of the human c-fms oncogene, we identified an open reading frame encoding the ribosomal protein L7 (RPL7). The presence of this sequence within intron 1 of the c-fms gene was confirmed by Southern blot hybridization and by sequence analysis of two independent cosmid clones (cos2-e and cos1-22) that span the human genomic c-fms locus. The RPL7 sequence was detected in a region of sequence overlapped by the cos2-e and cos1-22 cosmid clones but oriented opposite to the c-fms gene. We demonstrated that the sequence is identical to the full-length RPL7 cDNA sequence, but lacks any recognizable introns, has a 30-bp poly(A) tail, and is bracketed by two perfect direct repeats of 14 bp. We also showed that despite the fact that the 5′ flanking region of the RPL7 sequence contains a potential TATA box upstream of an intact open reading frame, this pseudogene (RPL7P) is not actively transcribed.  相似文献   
76.

Objective:

Numerous indexes of adiposity have been proposed and are currently in use in clinical practice and research. However, the correlation of these indexes with measures of vascular health remain poorly defined. This study investigated which measure of adiposity is most strongly associated with endothelial function.

Design and Methods:

Data from the Firefighters And Their Endothelium (FATE) study was used. The relationships between three measures of vascular function: flow‐mediated dilation (FMD), hyperemic velocity time integral (VTI), and hyperemic shear stress (HSS), and five measures of adiposity: BMI, waist circumference (WC), waist‐to‐hip ratio (WHR), waist‐to‐height ratio (WHtR), and body adiposity index (BAI) were tested. Univariate comparisons were made, and subsequently models adjusted for traditional risk factors were constructed.

Results:

A total of 1,462 male firefighters (mean age 49 ± 9) without cardiovascular disease comprised the study population. No measure of adiposity correlated with FMD; all five measures of adiposity were negatively correlated with VTI and HSS (P values <0.0001), with WHtR most strongly correlated with VTI, and WC most strongly correlated with HSS (both P < 0.05). In models including all five measures of obesity simultaneously, BMI, WC, and WHtR were all predictive of HSS (all P values <0.05), and BMI and WHR were both predictive of VTI (P values <0.05).

Conclusions:

Anthropometric measures of adiposity may help refine estimations of atherosclerotic burden. BMI was most consistently associated with endothelial dysfunction, but measures of adiposity that reflect distribution of mass were additive.  相似文献   
77.
Staphylococcus epidermidis, a human commensal, is an important opportunistic, biofilm-forming pathogen and the main cause of late onset sepsis in preterm infants, worldwide. In this study we describe the characteristics of S. epidermidis strains causing late onset (>72 h) bloodstream infection in preterm infants and skin isolates from healthy newborns. Attachment and biofilm formation capability were analyzed in microtiter plates and with transmission electron microscopy (TEM). Clonal relationship among strains was studied with pulsed-field gel electrophoresis. Antimicrobial susceptibility testing was performed, as well as the detection of biofilm-associated genes and of the invasiveness marker IS256 with polymerase chain reaction. Blood and skin isolates had similar attachment and biofilm-forming capabilities and biofilm formation was not related to the presence of specific genes. Filament-like membrane structures were seen by TEM early in the attachment close to the device surface, both in blood and skin strains. Nine of the ten blood isolates contained the IS256 and were also resistant to methicillin and gentamicin in contrast to skin strains. S. epidermidis strains causing bloodstream infection in preterm infants exhibit higher antibiotic resistance and are provided with an invasive genetic equipment compared to skin commensal strains. Adhesion capability to a device surface seems to involve bacterial membrane filaments.  相似文献   
78.
Understanding the correlates of immune protection against human immunodeficiency virus and simian immunodeficiency virus (SIV) will require defining the entire cellular immune response against the viruses. Here, we define two novel translation products from the SIV env mRNA that are targeted by the T-cell response in SIV-infected rhesus macaques. The shorter product is a subset of the larger product, which contains both the first exon of the Rev protein and a translated portion of the rev intron. Our data suggest that the translation of viral alternate reading frames may be an important source of T-cell epitopes, including epitopes normally derived from functional proteins.The pathway from viral infection to the cellular immune response is not well understood. Despite the importance of T-cell responses in control of AIDS virus replication (1, 3, 8, 22), the sources of the peptides recognized by virus-specific T cells are still being discovered. AIDS virus-specific CD8+ T lymphocytes (CD8-TL) recognize complexes of major histocompatibility complex (MHC) class I and virus-derived epitopes presented on the surface of infected cells. These epitopes can be derived from exogenous viral proteins in the infecting virion (19, 20) or from de novo synthesis of viral proteins (9, 21). Additional sources of epitopes are also being explored (4, 6).CD8-TL can also recognize epitopes derived from translation of viral alternate reading frames (ARFs). Though CD8-TL specific for ARF-derived epitopes have been detected in human immunodeficiency virus (HIV) (2), they remain a largely unexplored source of epitopes that might elicit potent antiviral cellular immune responses. We recently showed that SIVmac239-infected rhesus macaques that spontaneously controlled viral replication, termed elite controllers, made immunodominant CD8-TL responses against an epitope (RHLAFKCLW, or cRW9) derived from an ARF of the env gene (15). This response selected for viral escape in vivo and suppressed viral replication in an in vitro assay. These findings imply that CD8-TL specific for ARF-derived epitopes might be an important component of the total AIDS virus-specific cellular immune response.Here, we show that the cRW9 epitope is translated as part of two distinct products that differ in size due to start codon usage. The larger and more frequent product contains both the first 23 amino acids of the Rev protein (exon 1) and 50 amino acids translated from the rev intron. The smaller is produced by translation initiation at a start codon within the rev intron and is a subset of the larger product. Finally, we show that these products are degraded after translation from the mature Env-encoding mRNA.  相似文献   
79.
Deficiency of argininosuccinate lyase (ASL) causes argininosuccinic aciduria, an urea cycle defect that may present with a severe neonatal onset form or with a late onset phenotype. To date phenotype-genotype correlations are still not clear because biochemical assays of ASL activity correlate poorly with clinical severity in patients. We employed a yeast-based functional complementation assay to assess the pathogenicity of 12 missense ASL mutations, to establish genotype-phenotype correlations, and to screen for intragenic complementation. Rather than determining ASL enzyme activity directly, we have measured the growth rate in arginine-free medium of a yeast ASLnull strain transformed with individual mutant ASL alleles. Individual haploid strains were also mated to obtain diploid, “compound heterozygous” yeast. We show that the late onset phenotypes arise in patients because they harbor individual alleles retaining high residual enzymatic activity or because of intragenic complementation among different mutated alleles. In these cases complementation occurs because in the hybrid tetrameric enzyme at least one active site without mutations can be formed or because the differently mutated alleles can stabilize each other, resulting in partial recovery of enzymatic activity. Functional complementation in yeast is simple and reproducible and allows the analysis of large numbers of mutant alleles. Moreover, it can be easily adapted for the analysis of mutations in other genes involved in urea cycle disorders.Argininosuccinic aciduria (ASAuria, MIM 207900)3 is an autosomal recessive disorder of the urea cycle caused by mutations of the ASL gene (hASL, MIM 608310), encoding argininosuccinate lyase (ASL; EC 4.3.2.1.) (1). This enzyme is ubiquitously expressed and catalyzes the reversible breakdown of argininosuccinate to arginine and fumarate. ASL belongs to a superfamily of hydrolases that includes adenylosuccinate lyase and fumarase, which share a homotetrameric structure and a similar catalytic mechanism. The tetrameric structure of ASL accounts for the phenomenon of intragenic complementation. This particular situation occurs when a multimeric protein is formed from subunits produced by differently mutated alleles of the same gene. On complementation, a partially functional hybrid protein is produced from the two distinct types of mutant subunits, neither of which individually has appreciable enzymatic activity (2).ASL participates to the urea cycle, and in humans it is essential for ammonia detoxification, whereas in lower organisms it is required for the biosynthesis of arginine. Saccharomyces cerevisiae strains harboring a deletion of the homolog of human ASL (ARG4) cannot grow on media lacking arginine (3).ASAuria is characterized by accumulation of argininosuccinic acid (ASA) in body fluids, and severe hyperammonaemia. The disease displays clinical heterogeneity with two main clinical phenotypes: the acute/neonatal onset form, with symptoms rapidly progressing to deep coma, apnea, and death (1), and the subacute/late onset type, which is diagnosed in infancy or childhood (4). Such patients may present simply with mental retardation or an epileptic disorder. In both types the diagnosis is established unambiguously by measuring plasma levels of ammonia (not always elevated in the late onset form), ASA, and its anhydrides by plasma amino acids assay (1). Over 40 mutations of the ASL gene have been reported, both amino acid substitutions and truncating variants, which are scattered throughout the gene (5, 6).We have previously reported the identification of novel mutations of the ASL gene in a cohort of Italian patients (7). In this study we employed a yeast model to validate the pathogenicity of missense ASL mutations found in our cohort, to study the effects of different allelic combinations, and to establish possible genotype-phenotype correlations.  相似文献   
80.
The aim of this study was to compare two major hypotheses concerning the formation of bacterial community composition (BCC) at the local scale, i.e., whether BCC is determined by the prevailing local environmental conditions or by “metacommunity processes.” A batch culture experiment where bacteria from eight distinctly different aquatic habitats were regrown under identical conditions was performed to test to what extent similar communities develop under similar selective pressure. Differently composed communities emerged from different inoculum communities, as determined by terminal restriction fragment length polymorphism analysis of the 16S rRNA gene. There was no indication that similarity increased between communities upon growth under identical conditions compared to that for growth at the ambient sampling sites. This suggests that the history and distribution of taxa within the source communities were stronger regulating factors of BCC than the environmental conditions. Moreover, differently composed communities were different with regard to specific functions, such as enzyme activities, but maintained similar broad-scale functions, such as biomass production and respiration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号