首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   88篇
  免费   8篇
  96篇
  2023年   3篇
  2022年   4篇
  2021年   2篇
  2020年   5篇
  2019年   6篇
  2018年   7篇
  2017年   1篇
  2016年   5篇
  2015年   5篇
  2014年   7篇
  2013年   9篇
  2012年   6篇
  2011年   4篇
  2010年   3篇
  2009年   2篇
  2008年   4篇
  2007年   4篇
  2006年   4篇
  2005年   3篇
  2004年   3篇
  2003年   4篇
  2002年   2篇
  1999年   1篇
  1986年   1篇
  1967年   1篇
排序方式: 共有96条查询结果,搜索用时 15 毫秒
81.
Scaffold proteins are believed to enhance specificity in cell signaling when different pathways share common components. The prototype scaffold Ste5 binds to multiple components of the Saccharomyces cerevisiae mating pheromone response pathway, thereby conducting the mating signal to the Fus3 mitogen-activated protein kinase (MAPK). Some of the kinases that Ste5 binds to, however, are also shared with other pathways. Thus, it has been presumed that Ste5 prevents its bound kinases from transgressing into other pathways and protects them from intrusions from those pathways. Here we found that Fus3MAPK required Ste5 scaffolding to receive legitimate signals from the mating pathway as well as misdirected signals leaking from other pathways. Furthermore, increasing the cellular concentration of active Ste5 enhanced the channeling of inappropriate stimuli to Fus3. This aberrant signal crossover resulted in the erroneous induction of cell cycle arrest and mating. In contrast to Fus3, the Kss1 MAPK did not require Ste5 scaffolding to receive either authentic or leaking signals. Furthermore, the Ste11 kinase, once activated via Ste5, was able to signal to Kss1 independently of Ste5 scaffolding. These results argue that Ste5 does not act as a barrier that actively prevents signal crossover to Fus3 and that Ste5 may not effectively sequester its activated kinases away from other pathways. Rather, we suggest that specificity in this network is promoted by the selective activation of Ste5 and the distinct requirements of the MAPKs for Ste5 scaffolding.  相似文献   
82.
83.
84.
ObjectiveThe present study aims to simulate an alarm system for online detecting normal electrocardiogram (ECG) signals from abnormal ECG so that an individual's heart condition can be accurately and quickly monitored at any moment, and any possible serious dangers can be prevented.Materials and methodsFirst, the data from Physionet database were used to analyze the ECG signal. The data were collected equally from both males and females, and the data length varied between several seconds to several minutes. The heart rate variability (HRV) signal, which reflects heart fluctuations in different time intervals, was used due to the low spatial accuracy of ECG signal and its time constraint, as well as the similarity of this signal with the normal signal in some diseases. In this study, the proposed algorithm provided a return map as well as extracted nonlinear features of the HRV signal, in addition to the application of the statistical characteristics of the signal. Then, artificial neural networks were used in the field of ECG signal processing such as multilayer perceptron (MLP) and support vector machine (SVM), as well as optimal features, to categorize normal signals from abnormal ones.ResultsIn this paper, the area under the curve (AUC) of the ROC was used to determine the performance level of introduced classifiers. The results of simulation in MATLAB medium showed that AUC for MLP and SVM neural networks was 89.3% and 94.7%, respectively. Also, the results of the proposed method indicated that the more nonlinear features extracted from the ECG signal could classify normal signals from the patient.ConclusionThe ECG signal representing the electrical activity of the heart at different time intervals involves some important information. The signal is considered as one of the common tools used by physicians to diagnose various cardiovascular diseases, but unfortunately the proper diagnosis of disease in many cases is accompanied by an error due to limited time accuracy and hiding some important information related to this signal from the physicians' vision leading to the risks of irreparable harm for patients. Based on the results, designing the proposed alarm system can help physicians with higher speed and accuracy in the field of diagnosing normal people from patients and can be used as a complementary system in hospitals.  相似文献   
85.
Biological Trace Element Research - The prevalence of cardiometabolic risk factors has been increasing worldwide. The results of reported studies on the effects of zinc supplementation on...  相似文献   
86.
The brine shrimp, Artemia is the dominant macrozooplankton present in many hypersaline environments. Artemia urmiana is the only macroscopic organism in Urmia Salt Lake (Iran), and the high salinity of the lake makes it a suitable environment for halophilic archaea too. Because of common environment for Artemia and extreme halophiles; this investigation is concentrated on studying the relationship between Artemia and halophilic archaea in Urmia Lake. In this study first the procedure of arhaea isolation was done. Then, isolated strains were sub-cultured and DNA was extracted and amplified by PCR using specific primers for amplifying archaeal 16S rRNA. The amplified archeal DNA fragments were purified, and sequenced. 16S rRNA sequences were compared to known sequences using the NCBI BLAST program. Sequences relating to Halorubrum, Haloarcula and Halobacterium species were identified in Urmia Salt Lake water and Artemia adults and the phylogenetic tree of different species was constructed. Only Halorubrum species were present in association with Artemia. They belong to Halobacteriaceae family of archeae which are isolated from different salt lakes in different parts of world and we could show their existence in adult Artemia, another organism living in hypersaline enviroments.  相似文献   
87.
Imprinted genes play important roles in the mammalian development. In the parthenogenetic embryos (PE), there is only expression of maternally expressed genes. Therefore, PEs are appropriate experimental models to study genomic imprinting controlling mechanisms. The maternally expressed H19 and paternally expressed Igf2 are reciprocally imprinted genes in normal embryos. Here, we studied effect of transforming growth factor alpha (TGFα) treatment in vitro (10 ng/ml at the morula stage) on the expression of Igf2/H19 locus in mice PE (9.5 days of gestation, 25 somites) and their placentas (PP). Using RT-PCR, we showed that TGFα reactivated maternally imprinted Igf2 gene in parthenogenetic embryos and placentas. In spite of similar Tgfα expression in the preimplantation stages, its expression in the 9.5-day parthenogenetic embryos is significantly less than in normal embryos (NE). In our experiments, it was shown that reactivation of Igf2 gene occurred independently of H19 gene. In vitro TGFα treatment of mouse PE reactivated paternally expressed Igf2 gene in the PE and PP. In the PE and PP, both Igf2 and H19 were expressed. It seems that TGFα can play an important role as modulator of the Igf2/H19 locus.  相似文献   
88.
We have investigated how E-cadherin controls the elaboration of adherens junction associated cytoskeletal structures crucial for assembling tubular networks. During Drosophila development, tracheal branches are joined at branch tips through lumens that traverse doughnut-shaped fusion cells. Fusion cells form E-cadherin contacts associated with a track that contains F-actin, microtubules, and Shot, a plakin that binds F-actin and microtubules. Live imaging reveals that fusion occurs as the fusion cell apical surfaces meet after invaginating along the track. Initial track assembly requires E-cadherin binding to beta-catenin. Surprisingly, E-cadherin also controls track maturation via a juxtamembrane site in the cytoplasmic domain. Fusion cells expressing an E-cadherin mutant in this site form incomplete tracks that contain F-actin and Shot, but lack microtubules. These results indicate that E-cadherin controls track initiation and maturation using distinct, evolutionarily conserved signals to F-actin and microtubules, and employs Shot to promote adherens junction-associated cytoskeletal assembly.  相似文献   
89.
Leukocyte motility involves pseudopods extension at the leading edge and uropod contraction at the cell rear. Previous studies have shown that the glycoprotein CD43 redistributes to the uropod, when the cells develop polarity and locomotion. The present study addresses the question whether the accumulation of specific membrane molecules, such as CD43 at the contracted uropod precedes or follows development of polarity and locomotion. PMNs were labeled with fluorescent anti-CD43 antibodies and guided to polarize in the direction of a chemoattractant-containing micropipette or, once polarized, they were forced to reverse polarity and movement direction by placing the micropipette behind the uropod. This chemotactically-induced reversal of polarity was used as an efficient tool to analyse the sequence of events. CD43, but not another abundant surface glycoprotein CD45, was concentrated at the uropod. This documents that CD43 redistribution is a selective phenomenon. During reversal of polarity and of locomotion direction, the geometric center of the cell clearly changed direction earlier than the center of anti-CD43 fluorescence intensity. Thus, CD43 redistribution to the new uropod follows rather than precedes reversal of polarity, suggesting that CD43 redistribution is a consequence rather than a prerequisite for polarity and locomotion. PMNs making a U-turn maintained the pre-existing polarity and CD43 remained concentrated at the uropod, even when the front was moving in the opposite direction. Our data show that anterior pseudopod formation, rather than capping of CD43 at the uropod or the position of the uropod determines the direction of locomotion.  相似文献   
90.
Gravity alteration (micro- and hypergravity) is known to influence cell functions. As guanosine 3',5'-cyclic monophosphate (cGMP) plays an important role in human melanocyte functions and different guanylyl cyclase isoforms are responsible for cGMP synthesis in human non-metastatic and metastatic melanoma cells, we investigated the effects of hypergravity on the regulation of cGMP levels in cultured human melanocytes and in melanoma cell lines with different metastatic potentials. Hypergravity was produced by horizontal centrifugal acceleration. Here we report that long-term application of hypergravity (up to 5 g for 24 h) stimulated cGMP efflux in cultured melanocytes and in non-metastatic melanoma cells in the presence of 0.1 mM 3-isobutyl-1-methylxanthine (IBMX), a non-selective phosphodiesterase (PDE) inhibitor. Under these conditions, cAMP synthesis and melanin production were up-regulated in pigmented melanocytes and non-metastatic melanoma cells. Hypergravity also stimulated cGMP transport in the presence of 1 microM trequinsin, an inhibitor of cGMP-binding PDE (PDE5) and of transport by multidrug resistance proteins MRP4/5, whereas 50 microM trequinsin partially inhibited cGMP transport. Transport was further inhibited by probenecid, an inhibitor of endogenous non-selective transporters as well as of MRP4/5 and by cycloheximide as an inhibitor of de novo protein synthesis. In contrast, hypergravity did not affect cGMP efflux in metastatic melanoma cells, which might be related to an up-regulated cGMP efflux at 1 g. The results of the present study indicate that hypergravity may stimulate cGMP efflux in melanocytes and in non-metastatic melanoma cells most probably by an enhanced expression of endogenous transporters and/or MRP4/5. Thus, an altered acceleration vector may induce signaling events in melanocytic cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号