首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   854篇
  免费   53篇
  国内免费   1篇
  2023年   3篇
  2022年   17篇
  2021年   18篇
  2020年   7篇
  2019年   12篇
  2018年   17篇
  2017年   15篇
  2016年   21篇
  2015年   54篇
  2014年   57篇
  2013年   62篇
  2012年   87篇
  2011年   72篇
  2010年   49篇
  2009年   46篇
  2008年   52篇
  2007年   50篇
  2006年   44篇
  2005年   40篇
  2004年   25篇
  2003年   31篇
  2002年   22篇
  2001年   5篇
  2000年   5篇
  1999年   6篇
  1998年   4篇
  1997年   5篇
  1996年   5篇
  1995年   5篇
  1994年   2篇
  1993年   3篇
  1992年   4篇
  1991年   2篇
  1990年   4篇
  1989年   5篇
  1988年   7篇
  1987年   2篇
  1986年   3篇
  1985年   3篇
  1984年   2篇
  1983年   3篇
  1982年   5篇
  1981年   2篇
  1980年   3篇
  1978年   5篇
  1977年   3篇
  1976年   6篇
  1974年   1篇
  1973年   2篇
  1972年   3篇
排序方式: 共有908条查询结果,搜索用时 46 毫秒
31.
32.
33.
Site-specific variation of collagen fibril orientations can affect cartilage stresses in knee joints. However, this has not been confirmed by 3-D analyses. Therefore, we present a novel method for evaluation of the effect of patient-specific collagen architecture on time-dependent mechanical responses of knee joint cartilage during gait. 3-D finite element (FE) models of a human knee joint were created with the collagen architectures obtained from T2 mapped MRI (patient-specific model) and from literature (literature model). The effect of accuracy of the implementation of collagen fibril architecture into the model was examined by using a submodel with denser FE mesh. Compared to the literature model, fibril strains and maximum principal stresses were reduced especially in the superficial/middle regions of medial tibial cartilage in the patient-specific model after the loading response of gait (up to ?413 and ?26%, respectively). Compared to the more coarsely meshed joint model, the patient-specific submodel demonstrated similar strain and stress distributions but increased values particularly in the superficial cartilage regions (especially stresses increased >60%). The results demonstrate that implementation of subject-specific collagen architecture of cartilage in 3-D modulates location- and time-dependent mechanical responses of human knee joint cartilage. Submodeling with more accurate implementation of collagen fibril architecture alters cartilage stresses particularly in the superficial/middle tissue.  相似文献   
34.
Sodium and oxygen are prevalent impurities in kesterite solar cells. Both elements are known to strongly impact performance of the kesterite devices and can be connected to efficiency improvements seen after heat treatments. The sodium distribution in the kesterite absorber is commonly reported, whereas the oxygen distribution has received less attention. Here, a direct relationship between sodium and oxygen in kesterite absorbers is established using secondary ion mass spectrometry and explained by defect analyses within the density functional theory. The calculations reveal a binding energy of 0.76 eV between the substitutional defects NaCu and OS in the nearest neighbor configuration, indicating an abundance of Na? O complexes in kesterite absorbers at relevant temperatures. Oxygen incorporation is studied by introducing isotopic 18O at different stages of the Cu2ZnSnS4/Mo/soda‐lime glass baseline processing. It is observed that oxygen from the Mo back contact and contaminations during the sulfurization are primary contributors to the oxygen distribution. Indeed, unintentional oxygen incorporation leads to immobilization of sodium. This results in a strong correlation between sodium and oxygen, in excellent agreement with the theoretical calculations. Consequently, oxygen availability should be monitored to optimize postdeposition heat treatments to control impurities in kesterite absorbers and ultimately, the solar cell efficiency.  相似文献   
35.
We present a novel perspective on life‐history evolution that combines recent theoretical advances in fluctuating density‐dependent selection with the notion of pace‐of‐life syndromes (POLSs) in behavioural ecology. These ideas posit phenotypic co‐variation in life‐history, physiological, morphological and behavioural traits as a continuum from the highly fecund, short‐lived, bold, aggressive and highly dispersive ‘fast’ types at one end of the POLS to the less fecund, long‐lived, cautious, shy, plastic and socially responsive ‘slow’ types at the other. We propose that such variation in life histories and the associated individual differences in behaviour can be explained through their eco‐evolutionary dynamics with population density – a single and ubiquitous selective factor that is present in all biological systems. Contrasting regimes of environmental stochasticity are expected to affect population density in time and space and create differing patterns of fluctuating density‐dependent selection, which generates variation in fast versus slow life histories within and among populations. We therefore predict that a major axis of phenotypic co‐variation in life‐history, physiological, morphological and behavioural traits (i.e. the POLS) should align with these stochastic fluctuations in the multivariate fitness landscape created by variation in density‐dependent selection. Phenotypic plasticity and/or genetic (co‐)variation oriented along this major POLS axis are thus expected to facilitate rapid and adaptively integrated changes in various aspects of life histories within and among populations and/or species. The fluctuating density‐dependent selection POLS framework presented here therefore provides a series of clear testable predictions, the investigation of which should further our fundamental understanding of life‐history evolution and thus our ability to predict natural population dynamics.  相似文献   
36.
37.
We studied molecular and functional characteristics as well as hormonal regulation of the Na-K-2Cl cotransporter (NKCC) in the isolated rat heart and cardiomyocytes. NKCC activity was measured as bumetanide-sensitive (86)Rb(+) influx in isolated perfused rat hearts and isolated cardiomyocytes. Stimulation of alpha(1)-adrenoceptors (AR) by phenylephrine (30 microM) increased (86)Rb(+) influx. The NKCC inhibitor bumetanide (50 microM) reduced the response to phenylephrine by 45 +/- 13% (n = 12, P < 0.01). PD-98059 (10 microM), an inhibitor of the activation of the mitogen-activated protein kinases extracellular signal-regulated protein kinase 1 and 2 (ERK1/2), reduced the total response to phenylephrine by 51 +/- 13% (n = 10, P < 0.01) and eliminated the bumetanide-sensitive component, indicating that alpha(1)-AR mediated stimulation of NKCC is dependent on activation of ERK1/2. Inhibitors of protein kinase C or phosphatidylinositol 3-kinase had no effect. The presence of NKCC mRNA and protein was demonstrated in isolated rat cardiomyocytes. Phosphorylation of NKCC after alpha(1)-AR stimulation was shown by immunoprecipitation of the phosphoprotein from (32)P(i) prelabeled cardiomyocytes. Increased phosphorylation of the NKCC protein was also abolished by PD-98059. We conclude that the NKCC is present in rat cardiomyocytes and that ion transport by the cotransporter is regulated by alpha(1)-AR stimulation through phosphorylation of this protein involving the ERK pathway.  相似文献   
38.
Campylobacter infections are increasing and pose a serious public health problem in Denmark. Infections in humans and broiler flocks show similar seasonality, suggesting that climate may play a role in infection. We examined the effects of temperature, precipitation, relative humidity, and hours of sunlight on Campylobacter incidence in humans and broiler flocks by using lag dependence functions, locally fitted linear models, and cross validation methods. For humans, the best model included average temperature and sunlight 4 weeks prior to infection; the maximum temperature lagged at 4 weeks was the best single predictor. For broilers, the average and maximum temperatures 3 weeks prior to slaughter gave the best estimate; the average temperature lagged at 3 weeks was the best single predictor. The combined effects of temperature and sunlight or the combined effects of temperature and relative humidity predicted the incidence in humans equally well. For broiler flock incidence these factors explained considerably less. Future research should focus on elements within the broiler environment that may be affected by climate, as well as the interaction of microclimatic factors on and around broiler farms. There is a need to quantify the contribution of broilers as a source of campylobacteriosis in humans and to further examine the effect of temperature on human incidence after this contribution is accounted for. Investigations should be conducted into food consumption and preparation practices and poultry sales that may vary by season.  相似文献   
39.
We describe a novel polymerase chain reaction (PCR) and deoxyribonucleic acid (DNA) sequencingbased assay for rapid genotyping of the polymorphic Sp1 binding site in the COL1A1 gene (1). A single nucleotide G-->T substitution polymorphism at this GC-rich site has recently been reported to be a predictive genetic marker for low bone mineral density (BMD). To simplify screening for this marker, we optimized PCR conditions and subjected the amplicons to pyrosequencing, which is a convenient high-throughput sequence analysis technique, readily amenable to automation. The analysis of 200 deidentified convenience DNA samples extracted from blood revealed genotype frequences in Hardy-Weinberg equilibrium (SS 68.0%, Ss 28.5%, and ss 3.5%) in agreement with other studies of European populations. This study demonstrates for the first time that pyrosequencing can be used for rapid identification of the osteoporosis-associated single nucleotide polymorphism (SNP) in the COL1A1 gene.  相似文献   
40.
Interstitial K+ ([K+]i) was measured in human skeletal muscle by microdialysis during exhaustive leg exercise, with (AL) and without (L) previous intense arm exercise. In addition, the reproducibility of the [K+]i determinations was examined. Possible microdialysis-induced rupture of the sarcolemma was assessed by measurement of carnosine in the dialysate, because carnosine is only expected to be found intracellularly. Changes in [K+]i could be reproduced, when exhaustive leg exercise was performed on two different days, with a between-day difference of approximately 0.5 mM at rest and 1.5 mM at exhaustion. The time to exhaustion was shorter in AL than in L (2.7 +/- 0.3 vs. 4.0 +/- 0.3 min; P < 0.05). Furthermore, [K+]i was higher from 0 to 1.5 min of the intense leg exercise period in AL compared with L (9.2 +/- 0.7 vs. 6.4 +/- 0.9 mM; P < 0.001) and at exhaustion (11.9 +/- 0.5 vs. 10.3 +/- 0.6 mM; P < 0.05). The dialysate content of carnosine was elevated by exercise, but low-intensity exercise resulted in higher dialysate carnosine concentrations than subsequent intense exercise. Furthermore, no relationship was found between carnosine concentrations and [K+]i. Thus the present data suggest that microdialysis can be used to determine muscle [K+]i kinetics during intense exercise, when low-intensity exercise is performed before the intense exercise. The high [K+]i levels reached at exhaustion can be expected to cause fatigue, which is supported by the finding that a faster accumulation of interstitial K+, induced by prior arm exercise, was associated with a reduced time to fatigue.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号