首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   485篇
  免费   22篇
  国内免费   1篇
  2022年   4篇
  2021年   8篇
  2020年   2篇
  2019年   6篇
  2018年   7篇
  2017年   6篇
  2016年   11篇
  2015年   26篇
  2014年   37篇
  2013年   37篇
  2012年   43篇
  2011年   44篇
  2010年   29篇
  2009年   25篇
  2008年   26篇
  2007年   34篇
  2006年   33篇
  2005年   25篇
  2004年   16篇
  2003年   19篇
  2002年   15篇
  2001年   3篇
  2000年   3篇
  1999年   3篇
  1998年   2篇
  1997年   3篇
  1996年   2篇
  1995年   4篇
  1994年   2篇
  1993年   3篇
  1992年   3篇
  1991年   1篇
  1990年   3篇
  1989年   2篇
  1988年   5篇
  1987年   1篇
  1986年   3篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
  1980年   1篇
  1979年   1篇
  1978年   2篇
  1977年   2篇
  1976年   1篇
排序方式: 共有508条查询结果,搜索用时 31 毫秒
41.
Antibody array analysis of complex samples requires capture reagents with exceptional specificity. The frequency of antibodies with label-based detection may be as low as 5%. Here, however, we show that as many as 25% of commercially available antibodies are useful when biotinylated cellular proteins are fractionated by size exclusion chromatography (SEC) first. A microsphere multiplex with 1725 antibodies to cellular proteins was added to 24 SEC fractions, labelled with streptavidin and analyzed by flow cytometry (microsphere-based affinity proteomics, MAP) The SEC-MAP approach resolved different targets captured by each antibody as reactivity peaks across the separation range of the SEC column (10-670kDa). Complex reactivity profiles demonstrated that most antibodies bound more than one target. However, specific binding was readily detected as reactivity peaks common for different antibodies to the same protein. We optimized sample preparation and found that amine-reactive biotin rarely inhibited antibody binding when the biotin to lysine ratio was kept below 1:1 during labelling. Moreover, several epitopes that were inaccessible to antibodies in native proteins were unmasked after heat denaturation with 0.1% of SDS. The SEC-MAP format should allow researchers to build multiplexed assays with antibodies purchased for use in e.g. Western blotting.  相似文献   
42.

Background

Individual-based biophysical larval models, initialized and parameterized by observations, enable numerical investigations of various factors regulating survival of young fish until they recruit into the adult population. Exponentially decreasing numbers in Northeast Arctic cod and Norwegian Spring Spawning herring early changes emphasizes the importance of early life history, when ichthyoplankton exhibit pelagic free drift. However, while most studies are concerned with past recruitment variability it is also important to establish real-time predictions of ichthyoplankton distributions due to the increasing human activity in fish habitats and the need for distribution predictions that could potentially improve field coverage of ichthyoplankton.

Methodology/Principal Findings

A system has been developed for operational simulation of ichthyoplankton distributions. We have coupled a two-day ocean forecasts from the Norwegian Meteorological Institute with an individual-based ichthyoplankton model for Northeast Arctic cod and Norwegian Spring Spawning herring producing daily updated maps of ichthyoplankton distributions. Recent years observed spawning distribution and intensity have been used as input to the model system. The system has been running in an operational mode since 2008. Surveys are expensive and distributions of early stages are therefore only covered once or twice a year. Comparison between model and observations are therefore limited in time. However, the observed and simulated distributions of juvenile fish tend to agree well during early fall. Area-overlap between modeled and observed juveniles September 1st range from 61 to 73%, and 61 to 71% when weighted by concentrations.

Conclusions/Significance

The model system may be used to evaluate the design of ongoing surveys, to quantify the overlap with harmful substances in the ocean after accidental spills, as well as management planning of particular risky operations at sea. The modeled distributions are already utilized during research surveys to estimate coverage success of sampled biota and immediately after spills from ships at sea.  相似文献   
43.
44.
45.
We tested the hypothesis that parental effort modulates the magnitude of corticosterone and prolactin responses to stress in a long-lived bird, the Black-legged kittiwake (Rissa tridactyla). To do so, we compared corticosterone and prolactin responses to capture/restraint stress between chick-rearing birds and failed breeders (no parental effort). We predicted that (1) the increase in plasma corticosterone levels in response to stress should be lower in chick-rearing birds, (2) the decrease in plasma prolactin levels in response to stress should be lower in chick-rearing birds, and (3) as both sexes care for the chick, there should be no sex difference in the hormonal response to stress. Baseline plasma corticosterone and prolactin levels were higher in chick-rearing birds and were not influenced by body condition. Failed breeders were in better condition than chick-rearing individuals. Corticosterone response to stress was unaffected by parental effort as both chick-rearing and failed birds exhibited a robust corticosterone increase. Prolactin response to stress was however clearly influenced by parental effort: chick-rearing birds showed a modest 9% prolactin decrease whereas in failed birds prolactin concentrations fell by 41%. Body condition did not influence hormonal responses to stress. When facing stressful condition, breeding kittiwakes attenuate their prolactin response to stress while enhancing their secretion of corticosterone. Increasing corticosterone secretion triggers foraging efforts and diminishes nest attendance whereas an attenuation of prolactin response to stress maintains parental behavior. We suggest that this hormonal mechanism facilitates a flexible time-budget that has been interpreted as a buffer against environmental variability.  相似文献   
46.
The assembly of iron-sulfur (Fe-S) clusters involves several pathways and in prokaryotes the mobilization of the sulfur (SUF) system is paramount for Fe-S biogenesis and repair during oxidative stress. The prokaryotic SUF system consists of six proteins: SufC is an ABC/ATPase that forms a complex with SufB and SufD, SufA acts as a scaffold protein, and SufE and SufS are involved in sulfur mobilization from cysteine. Despite the importance of Fe-S proteins in higher plant plastids, little is known regarding plastidic Fe-S cluster assembly. We have recently shown that Arabidopsis harbors an evolutionary conserved plastidic SufC protein (AtNAP7) capable of hydrolyzing ATP and interacting with the SufD homolog AtNAP6. Based on this and the prokaryotic SUF system we speculated that a SufB-like protein may exist in plastids. Here we demonstrate that the Arabidopsis plastid-localized SufB homolog AtNAP1 can complement SufB deficiency in Escherichia coli during oxidative stress. Furthermore, we demonstrate that AtNAP1 can interact with AtNAP7 inside living chloroplasts suggesting the presence of a plastidic AtNAP1.AtNAP6.AtNAP7 complex and remarkable evolutionary conservation of the SUF system. However, in contrast to prokaryotic SufB proteins with no associated ATPase activity we show that AtNAP1 is an iron-stimulated ATPase and that AtNAP1 is capable of forming homodimers. Our results suggest that AtNAP1 represents an atypical plastidic SufB-like protein important for Fe-S cluster assembly and for regulating iron homeostasis in Arabidopsis.  相似文献   
47.
Bacteria and plastids divide symmetrically through binary fission by accurately placing the division site at midpoint, a process initiated by FtsZ polymerization, which forms a Z-ring. In Escherichia coli precise Z-ring placement at midcell depends on controlled oscillatory behavior of MinD and MinE: In the presence of ATP MinD interacts with the FtsZ inhibitor MinC and migrates to the membrane where the MinD-MinC complex recruits MinE, followed by MinD-mediated ATP hydrolysis and membrane release. Although correct Z-ring placement during Arabidopsis plastid division depends on the precise localization of the bacterial homologs AtMinD1 and AtMinE1, the underlying mechanism of this process remains unknown. Here we have shown that AtMinD1 is a Ca2+-dependent ATPase and through mutation analysis demonstrated the physiological importance of this activity where loss of ATP hydrolysis results in protein mislocalization within plastids. The observed mislocalization is not due to disrupted AtMinD1 dimerization, however; the active site AtMinD1(K72A) mutant is unable to interact with the topological specificity factor AtMinE1. We have shown that AtMinE1, but not E. coli MinE, stimulates AtMinD1-mediated ATP hydrolysis, but in contrast to prokaryotes stimulation occurs in the absence of membrane lipids. Although AtMinD1 appears highly evolutionarily conserved, we found that important biochemical and cell biological properties have diverged. We propose that correct intraplastidic AtMinD1 localization is dependent on AtMinE1-stimulated, Ca2+-dependent AtMinD1 ATP hydrolysis, ultimately ensuring precise Z-ring placement and symmetric plastid division.  相似文献   
48.
Autophagic degradation of ubiquitinated protein aggregates is important for cell survival, but it is not known how the autophagic machinery recognizes such aggregates. In this study, we report that polymerization of the polyubiquitin-binding protein p62/SQSTM1 yields protein bodies that either reside free in the cytosol and nucleus or occur within autophagosomes and lysosomal structures. Inhibition of autophagy led to an increase in the size and number of p62 bodies and p62 protein levels. The autophagic marker light chain 3 (LC3) colocalized with p62 bodies and co-immunoprecipitated with p62, suggesting that these two proteins participate in the same complexes. The depletion of p62 inhibited recruitment of LC3 to autophagosomes under starvation conditions. Strikingly, p62 and LC3 formed a shell surrounding aggregates of mutant huntingtin. Reduction of p62 protein levels or interference with p62 function significantly increased cell death that was induced by the expression of mutant huntingtin. We suggest that p62 may, via LC3, be involved in linking polyubiquitinated protein aggregates to the autophagy machinery.  相似文献   
49.
Leaf trichomes may serve several biological functions including protection against herbivores, drought, and UV radiation; and their adaptive value can be expected to vary among environments. The perennial, self-incompatible herb Arabidopsis lyrata is polymorphic for trichome production, and occurs in a glabrous and a trichome-producing form. Controlled crosses indicate that the polymorphism is governed by a single gene, with trichome production being dominant. We examined the hypothesis that trichome production is subject to divergent selection (i.e., directional selection favoring different phenotypes in different populations) by comparing patterns of variation at the locus coding for glabrousness and at eight putatively neutral isozyme loci in Swedish populations of A. lyrata. The genetic diversity (He) and allele number at isozyme loci tended to increase with population size and decreased with latitude of origin, whereas genetic diversity at the locus coding for glabrousness did not vary with population size and increased with latitude of origin. The degree of genetic differentiation at the glabrousness locus was much higher than that at isozyme loci. Genetic identity at isozyme loci was negatively related to geographic distance, suggesting isolation by distance. In contrast, there was no significant correlation between genetic identity at the glabrousness locus and at isozyme loci. The results are consistent with the hypothesis that divergent selection contributes to population differentiation in trichome production in A. lyrata.  相似文献   
50.
YidC/OxaI play essential roles in the insertion of a wide range of membrane proteins in Eschericha coli and mitochondria, respectively. In contrast, the chloroplast thylakoid homolog Albino3 (Alb3) facilitates the insertion of only a specialized subset of proteins, and the vast majority insert into thylakoids by a pathway that is so far unique to chloroplasts. In this study, we have analyzed the role of Alb3 in the cyanobacterium Synechocystis sp. PCC6803, which contains internal thylakoids that are similar in some respects to those of chloroplasts. The single alb3 gene (slr1471) was disrupted by the introduction of an antibiotic cassette, and photoautotrophic growth resulted in the generation of a merodiploid species (but not full segregation), indicating an essential role for Alb3 in maintaining the photosynthetic apparatus. Thylakoid organization is lost under these conditions, and the levels of photosynthetic pigments fall to approximately 40% of wild-type levels. Photosynthetic electron transport and oxygen evolution are reduced by a similar extent. Growth on glucose relieves the selective pressure to maintain photosynthetic competence, and under these conditions, the cells become completely bleached, again indicating that Alb3 is essential for thylakoid biogenesis. Full segregation could not be achieved under any growth regime, strongly suggesting that the slr1471 open reading frame is essential for cell viability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号