全文获取类型
收费全文 | 65篇 |
免费 | 13篇 |
专业分类
78篇 |
出版年
2018年 | 2篇 |
2017年 | 3篇 |
2016年 | 4篇 |
2015年 | 3篇 |
2014年 | 2篇 |
2013年 | 3篇 |
2012年 | 6篇 |
2011年 | 3篇 |
2010年 | 4篇 |
2009年 | 5篇 |
2008年 | 4篇 |
2007年 | 5篇 |
2006年 | 2篇 |
2005年 | 2篇 |
2004年 | 1篇 |
2003年 | 1篇 |
2002年 | 2篇 |
2001年 | 1篇 |
2000年 | 1篇 |
1999年 | 1篇 |
1998年 | 7篇 |
1995年 | 2篇 |
1994年 | 1篇 |
1991年 | 1篇 |
1990年 | 1篇 |
1989年 | 1篇 |
1988年 | 1篇 |
1987年 | 1篇 |
1986年 | 2篇 |
1985年 | 1篇 |
1984年 | 1篇 |
1982年 | 1篇 |
1977年 | 1篇 |
1972年 | 1篇 |
1948年 | 1篇 |
排序方式: 共有78条查询结果,搜索用时 0 毫秒
61.
Nathalie M. L. C?té Julien Daligault Mélanie Pruvost E. Andrew Bennett Olivier Gorgé Silvia Guimaraes Nicolas Capelli Matthieu Le Bailly Eva-Maria Geigl Thierry Grange 《PloS one》2016,11(1)
Human gastrointestinal parasites are good indicators for hygienic conditions and health status of past and present individuals and communities. While microscopic analysis of eggs in sediments of archeological sites often allows their taxonomic identification, this method is rarely effective at the species level, and requires both the survival of intact eggs and their proper identification. Genotyping via PCR-based approaches has the potential to achieve a precise species-level taxonomic determination. However, so far it has mostly been applied to individual eggs isolated from archeological samples. To increase the throughput and taxonomic accuracy, as well as reduce costs of genotyping methods, we adapted a PCR-based approach coupled with next-generation sequencing to perform precise taxonomic identification of parasitic helminths directly from archeological sediments. Our study of twenty-five 100 to 7,200 year-old archeological samples proved this to be a powerful, reliable and efficient approach for species determination even in the absence of preserved eggs, either as a stand-alone method or as a complement to microscopic studies. 相似文献
62.
Nicholas?JB?BreretonEmail author Michael?J?Ray Ian?Shield Peter?Martin Angela?Karp Richard?J?Murphy 《Biotechnology for biofuels》2012,5(1):83
Background
The recalcitrance of lignocellulosic cell wall biomass to deconstruction varies greatly in angiosperms, yet the source of this variation remains unclear. Here, in eight genotypes of short rotation coppice willow (Salix sp.) variability of the reaction wood (RW) response and the impact of this variation on cell wall recalcitrance to enzymatic saccharification was considered.Results
A pot trial was designed to test if the ‘RW response’ varies between willow genotypes and contributes to the differences observed in cell wall recalcitrance to enzymatic saccharification in field-grown trees. Biomass composition was measured via wet chemistry and used with glucose release yields from enzymatic saccharification to determine cell wall recalcitrance. The levels of glucose release found for pot-grown control trees showed no significant correlation with glucose release from mature field-grown trees. However, when a RW phenotype was induced in pot-grown trees, glucose release was strongly correlated with that for mature field-grown trees. Field studies revealed a 5-fold increase in glucose release from a genotype grown at a site exposed to high wind speeds (a potentially high RW inducing environment) when compared with the same genotype grown at a more sheltered site.Conclusions
Our findings provide evidence for a new concept concerning variation in the recalcitrance to enzymatic hydrolysis of the stem biomass of different, field-grown willow genotypes (and potentially other angiosperms). Specifically, that genotypic differences in the ability to produce a response to RW inducing conditions (a ‘RW response’) indicate that this RW response is a primary determinant of the variation observed in cell wall glucan accessibility. The identification of the importance of this RW response trait in willows, is likely to be valuable in selective breeding strategies in willow (and other angiosperm) biofuel crops and, with further work to dissect the nature of RW variation, could provide novel targets for genetic modification for improved biofuel feedstocks.63.
Persistence of native and exotic plants 10 years after prairie reconstruction 总被引:1,自引:0,他引:1 下载免费PDF全文
Diane L. Larson JB Bright Pauline Drobney Jennifer L. Larson Sara Vacek 《Restoration Ecology》2017,25(6):953-961
Prairie reconstructions are a critical component of preservation of the imperiled tallgrass prairie ecosystem in the Midwestern United States. Sustainability of this endeavor depends on establishment of persistent cover of planted native species and resistance to noxious weeds. The goal of this study was to understand the influence of early reconstruction practices on long‐term outcomes. Twelve replicates of three planting methods (dormant‐season broadcast, growing‐season broadcast, and growing‐season drill) and three seed mix richness levels (10, 20, or 34 species), fully crossed in a completely randomized design were planted in 2005 on nine former agricultural fields located in Iowa and Minnesota. Cover by species was estimated in 2005–2007, 2010, and 2015. In 2015, cover of planted species, native nonplanted species, and exotic species were similar to those recorded in 2010. Cover of the noxious weed Cirsium arvense had also declined by an average of 49% without herbicide from a peak in 2007 to low stable levels from 2010 to 2015. Richness of planted forbs, on the other hand, were still increasing in high‐richness broadcast treatments (e.g. 17–59% increase 2010–1015 in Minnesota). Two results in 2015 are reasons for concern: cover of planted species is only slightly over 50% in both Minnesota and Iowa, though with forbs still increasing, this may improve; and the cool‐season exotic grasses Poa pratensis and Bromus inermis are increasing at both Minnesota and Iowa sites. Control of these invasive grasses will be necessary, but care will be needed to avoid negative impacts of control methods on natives. 相似文献
64.
Fiegler H Geigl JB Langer S Rigler D Porter K Unger K Carter NP Speicher MR 《Nucleic acids research》2007,35(3):e15
Heterogeneity in the genome copy number of tissues is of particular importance in solid tumor biology. Furthermore, many clinical applications such as pre-implantation and non-invasive prenatal diagnosis would benefit from the ability to characterize individual single cells. As the amount of DNA from single cells is so small, several PCR protocols have been developed in an attempt to achieve unbiased amplification. Many of these approaches are suitable for subsequent cytogenetic analyses using conventional methodologies such as comparative genomic hybridization (CGH) to metaphase spreads. However, attempts to harness array-CGH for single-cell analysis to provide improved resolution have been disappointing. Here we describe a strategy that combines single-cell amplification using GenomePlex library technology (GenomePlex® Single Cell Whole Genome Amplification Kit, Sigma-Aldrich, UK) and detailed analysis of genomic copy number changes by high-resolution array-CGH. We show that single copy changes as small as 8.3 Mb in single cells are detected reliably with single cells derived from various tumor cell lines as well as patients presenting with trisomy 21 and Prader–Willi syndrome. Our results demonstrate the potential of this technology for studies of tumor biology and for clinical diagnostics. 相似文献
65.
66.
Repair under non-growth conditions of DNA double-stranded breaks (DSBs) and S1 nuclease-sensitive sites (SSSs; e.g. DNA damage which is processed by in vitro treatment with S1 nuclease to DSBs) induced by [60Co]-gamma-rays (200 Gy; anoxic conditions) was monitored in a diploid repair-competent strain of Saccharomyces cerevisiae. We used pulsed-field gel electrophoresis (PFGE), which allows the separation of chromosome-sized yeast DNA molecules, to determine the number of DSBs and SSSs in individual chromosome species of yeast. Our results indicate that SSSs which have been regarded as clusters of base damage in opposite DNA strands are repaired efficiently in a repair-proficient diploid strain of yeast. The time course of SSS repair is comparable to the one of DSB repair, indicating similarities in the molecular mechanism. Both types of repair kinetics are different for different chromosome species. 相似文献
67.
Matthew W Blair Sharon JB Knewtson Carolina Astudillo Chee-Ming Li Andrea C Fernandez Michael A Grusak 《BMC plant biology》2010,10(1):215
Background
Iron deficiency anemia is a global problem which often affects women and children of developing countries. Strategy I plants, such as common bean (Phaseolus vulgaris L.) take up iron through a process that involves an iron reduction mechanism in their roots; this reduction is required to convert ferric iron to ferrous iron. Root absorbed iron is critical for the iron nutrition of the plant, and for the delivery of iron to the shoot and ultimately the seeds. The objectives of this study were to determine the variability and inheritance for iron reductase activity in a range of genotypes and in a low × high seed iron cross (DOR364 × G19833), to identify quantitative trait loci (QTL) for this trait, and to assess possible associations with seed iron levels. 相似文献68.
JB Farinha DL Dos Santos G Bresciani LF Bard F de Mello ST Stefanello AA Courtes FAA Soares 《Biology of sport / Institute of Sport》2015,32(2):109-114
The aim of this study was to investigate the impact of moderate aerobic training on functional, anthropometric, biochemical, and health-related quality of life (HRQOL) parameters on women with metabolic syndrome (MS). Fifteen untrained women with MS performed moderate aerobic training for 15 weeks, without modifications of dietary behaviours. Functional, anthropometric, biochemical, control diet record and HRQOL parameters were assessed before and after the training. Despite body weight maintenance, the patients presented decreases in waist circumference (P = 0.001), number of MS components (P = 0.014), total cholesterol (P = 0.049), HDL cholesterol (P = 0.004), LDL cholesterol (P = 0.027), myeloperoxidase activity (P = 0.002) and thiobarbituric acid-reactive substances levels (P = 0.006). There were no differences in total energy, carbohydrate, protein and lipid intake pre- and post-training. Furthermore, improvements in the HRQOL subscales of physical functioning (P = 0.03), role-physical (P = 0.039), bodily pain (P = 0.048), general health (P = 0.046) and social functioning scoring (P = 0.011) were reported. Despite the absence of weight loss, aerobic training induced beneficial effects on functional, anthropometric, biochemical and HRQOL parameters in women with MS. 相似文献
69.
The permanently eutrophic Sundays Estuary experiences recurrent harmful algal blooms (HABs) of Heterosigma akashiwo (Raphidophyceae). This study aimed to identify the environmental variables shaping phytoplankton community composition and succession patterns during a typical spring/summer harmful algal bloom (HAB) period. Monitoring of abiotic and phytoplankton variables was undertaken over the period of a month in 2016. Surface water salinity corresponding to mesohaline conditions (9 to 12) was a prerequisite for site selection. During the study, two HABs (>550 µg Chl a l?1) of H. akashiwo occurred, each lasting for approximately a week in duration. Analyses highlighted nutrient depletion (i.e. nitrate and phosphate concentrations) as the key constraint on bloom duration. When the density of H. akashiwo decreased, the community composition became more diverse with species belonging to Bacillariophyceae and Dinophyceae becoming more abundant; albeit to a lesser degree (<180 µg Chl a l?1). Dissolved oxygen shifted from super-saturated conditions (>14 mg l?1) during peak HAB conditions, to instances of bottom water oxygen depletion (2–4 mg l?1) during the decay phase. These findings highlight the potential severity of transforming a catchment from natural to one that is highly regulated by agricultural practices, while also emphasising the need for management intervention. 相似文献
70.
A phylogenetic survey using the polymerase chain reaction (PCR) has
identified four major P element subfamilies in the saltans and willistoni
species groups of Drosophila. One subfamily, containing about half of the
sequences studied, consists of elements that are very similar to the
canonical (and active) P element from D. melanogaster. Within this
subfamily, nucleotide sequence differentiation among different copies from
the same species and among elements from different species is relatively
low. This observation suggests that the canonical elements are relatively
recent additions to the genome or, less likely, are evolving slowly
relative to the other subfamilies. Elements belonging to the three
noncanonical lineages are distinct from the canonical elements and from one
another. Furthermore, there is considerably more sequence variation, on the
average, within the noncanonical subfamilies compared to the canonical
elements. Horizontal transfer and the coexistence of multiple,
independently evolving element subfamilies in the same genome may explain
the distribution of P elements in the saltans and willistoni species
groups. Such explanations are not mutually exclusive, and each may be
involved to varying degrees in the maintenance of P elements in natural
populations of Drosophila.
相似文献