首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   107篇
  免费   18篇
  2021年   3篇
  2020年   2篇
  2018年   3篇
  2017年   3篇
  2016年   2篇
  2015年   5篇
  2014年   5篇
  2013年   4篇
  2012年   5篇
  2011年   8篇
  2010年   3篇
  2009年   10篇
  2008年   5篇
  2007年   9篇
  2006年   7篇
  2004年   4篇
  2003年   8篇
  2002年   3篇
  2001年   7篇
  2000年   6篇
  1999年   6篇
  1998年   4篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1992年   1篇
  1991年   2篇
  1990年   2篇
  1989年   1篇
  1973年   2篇
  1963年   1篇
排序方式: 共有125条查询结果,搜索用时 78 毫秒
101.
Cellular responses to inputs that vary both temporally and spatially are determined by complex relationships between the components of cell signaling networks. Analysis of these relationships requires access to a wide range of experimental reagents and techniques, including the ability to express the protein components of the model cells in a variety of contexts. As part of the Alliance for Cellular Signaling, we developed a robust method for cloning large numbers of signaling ORFs into Gateway entry vectors, and we created a wide range of compatible expression platforms for proteomics applications. To date, we have generated over 3000 plasmids that are available to the scientific community via the American Type Culture Collection. We have established a website at www.signaling-gateway.org/data/plasmid/ that allows users to browse, search, and blast Alliance for Cellular Signaling plasmids. The collection primarily contains murine signaling ORFs with an emphasis on kinases and G protein signaling genes. Here we describe the cloning, databasing, and application of this proteomics resource for large scale subcellular localization screens in mammalian cell lines.  相似文献   
102.
Understanding how genetic variation affects distinct cellular phenotypes, such as gene expression levels, alternative splicing and DNA methylation levels, is essential for better understanding of complex diseases and traits. Furthermore, how inter-individual variation of DNA methylation is associated to gene expression is just starting to be studied. In this study, we use the GenCord cohort of 204 newborn Europeans’ lymphoblastoid cell lines, T-cells and fibroblasts derived from umbilical cords. The samples were previously genotyped for 2.5 million SNPs, mRNA-sequenced, and assayed for methylation levels in 482,421 CpG sites. We observe that methylation sites associated to expression levels are enriched in enhancers, gene bodies and CpG island shores. We show that while the correlation between DNA methylation and gene expression can be positive or negative, it is very consistent across cell-types. However, this epigenetic association to gene expression appears more tissue-specific than the genetic effects on gene expression or DNA methylation (observed in both sharing estimations based on P-values and effect size correlations between cell-types). This predominance of genetic effects can also be reflected by the observation that allele specific expression differences between individuals dominate over tissue-specific effects. Additionally, we discover genetic effects on alternative splicing and interestingly, a large amount of DNA methylation correlating to alternative splicing, both in a tissue-specific manner. The locations of the SNPs and methylation sites involved in these associations highlight the participation of promoter proximal and distant regulatory regions on alternative splicing. Overall, our results provide high-resolution analyses showing how genome sequence variation has a broad effect on cellular phenotypes across cell-types, whereas epigenetic factors provide a secondary layer of variation that is more tissue-specific. Furthermore, the details of how this tissue-specificity may vary across inter-relations of molecular traits, and where these are occurring, can yield further insights into gene regulation and cellular biology as a whole.  相似文献   
103.
104.
This study provides the first comparative analysis of phosphoenolpyruvate carboxylase isoforms (PEPc; EC 4.1.1.31) in an obligate crassulacean acid metabolism (CAM) plant, Vanilla planifolia Salisb. (Orchidaceae). Nocturnal CO2 fixation and malate accumulation by the leaves and the green stem show that these organs perform CAM. The chloroplast-containing aerial roots, however, exhibit C3 photosynthesis. The catalytic activity of PEPc was highest in the leaves compared with the stem and aerial roots. The Km (PEP) and Ki (malate) were similar in the PEPc extracted from leaf and aerial roots, and significant higher in stem. cDNA was obtained from those tissues and also from the soil-grown roots, and various cDNA clones were detected and amplified by means of RT-PCR and RACE-PCR. The amino-acid sequences of the PEPc isoforms deduced from the cDNA showed a great degree of homology, and Southern blot analysis suggests that the encoding genes form a small multigene family of at least two members. One PEPc isoform (PpcV1) is assumed to be related to CAM because, as shown by northern blot analysis, it is mainly expressed in the CAM-performing organs, i.e. in the leaves and the stem. A further isoform (PpcV2) was identified in the soil-grown roots and aerial roots, but northern blots show that to some extent PpcV2 is also expressed in the leaf and the stem tissues. Thus, it is assumed that PpcV2 encodes the housekeeping isoform of PEPc. Altogether, the present study provides support in favour of the view that isoforms of PEPc are related to specific functions.  相似文献   
105.
106.
We have previously shown that T lymphocytes and interferon-gamma are involved in hypercholesterolemia-induced leukocyte adhesion to vascular endothelium. This study assessed the contribution of interleukin 12 (IL-12) to these hypercholesterolemia-induced inflammatory responses. Intravital videomicroscopy was used to quantify leukocyte adhesion and emigration and oxidant stress (dihydrorhodamine oxidation) in unstimulated cremasteric venules (wall shear rate > or =500 s-1) of wild-type (WT) C57Bl/6, lymphocyte-deficient [recombinase-activating gene knockout (RAG1-/-)], and IL-12-deficient (p35-/- and p40-/-; p35 and p40 are the two subunits of active IL-12) mice on either a normal (ND) or high-cholesterol (HC) diet for 2 wk. RAG1-/--HC mice received splenocytes from WT-HC (WT --> RAG1-/-), p35-/--HC (p35-/- --> RAG1-/-), or p40-/--HC (p40-/- --> RAG1-/-) mice. Compared with WT-ND mice, WT-HC mice exhibited exaggerated leukocyte adherence and emigration as well as increased dihydrorhodamine oxidation. The enhanced leukocyte recruitment was absent in the RAG1-/--ND, p35-/--ND, and p40-/--ND groups. Hypercholesterolemia-induced leukocyte adherence and emigration were attenuated in RAG1-/--HC vs. WT-HC mice but were similar to ND mice. Furthermore, compared with WT-HC animals, p35-/--HC and p40-/--HC mice showed significantly lower leukocyte adhesion and tissue oxidant stress responses, but these values were comparable to ND mice. Leukocyte adherence and emigration in WT --> RAG1-/- mice were similar to responses of WT-HC mice. However, p35-/- --> RAG1-/- mice had lower levels of adherence and emigration vs. the WT --> RAG1-/- and WT-HC groups. Elevated levels of leukocyte adherence and emigration were restored by approximately 50% toward WT-HC levels in p40-/- --> RAG1-/- mice. These findings implicate IL-12 in the inflammatory responses observed in the venules of hypercholesterolemic mice.  相似文献   
107.
Fluorescence spectroscopy and 1H/2H-exchange techniques have been applied to characterize the folding of an scFv fragment, derived from the humanized anti-HER2 antibody hu4D5-8. A stable intermediate, consisting of a native VL domain and an unfolded VH domain, is populated under equilibrium unfolding conditions. A partially structured intermediate, with 1H/2H-exchange protection significantly less than that of the two isolated domains together, is detectable upon refolding the equilibrium-denatured scFv fragment. This means that the domains in the heterodimer do not fold independently. Rather, they associate prematurely before full 1H/2H-exchange protection can be gained. The formation of the native heterodimer from the non-native intermediate is a slow, cooperative process, which is rate-limited by proline cis/trans-isomerization. Unproductive domain association is also detectable after short-term denaturation, i.e. with the proline residues in native conformation. Only a fraction of the short-term denatured protein folds into the native protein in a fast, proline-independent reaction, because of spontaneous proline cis/trans-reisomerization in the early non-native intermediate. The comparison with the previously studied antibody McPC603 has now allowed us to delineate similarities in the refolding pathway of scFv fragments.  相似文献   
108.
109.
Estimates of the net equilibrium binding constants for [(H2O)(NH3)5RuII]2+, [Cl(NH3)5RuIII]2+, cis-[(H2O)2(NH3)4RuII]2+ and cis-[Cl2(NH3)4RuIII]+ with apotransferrin (Tf) and holotransferrin (Fe2Tf) suggests that RuIII, but not RuII complexes bind with a higher affinity to the iron binding sites. Several other presumably histidyl imidazole sites bind with approximately the same affinity (Keff = 10(2) to 10(3) M(-1) to both RuII and RuIII. Compared to HeLa cells, an order of magnitude higher level of nuclear DNA binding ([Ru]DNA/[P]DNA) was required to achieve the same level of toxicity in Jurkat Tag cells, which probably relates to the substantially higher levels of cis-[Cl2(NH3)4Ru]+ needed to inhibit 50% of the cell growth in the Jurkat Tag cell line. Against Jurkat Tag cells, the toxicity of the pentaammineruthenium(III) group is enhanced by approximately two orders of magnitude upon binding primarily to the Fe-sites in apotransferrin, whereas the toxicity of the tetraammineruthenium(III) moiety is only marginally increased. Binding to Fe2Tf does not increase the toxicity of either group. Significant dissociation over 24 h of the ammineruthenium(III) ions from apotransferrin requires reduction to RuII.  相似文献   
110.
To better understand the evolution of the enzyme phosphoenolpyruvate carboxylase (PEPC) and to test its versatility as a molecular character in phylogenetic and taxonomic studies, we have characterized and compared 70 new partial PEPC nucleotide and amino acid sequences (about 1100 bp of the 3' side of the gene) from 50 plant species (24 species of Bryophyta, 1 of Pteridophyta, and 25 of Spermatophyta). Together with previously published data, the new set of sequences allowed us to construct the up to now most complete phylogenetic tree of PEPC, where the PEPC sequences cluster according to both the taxonomic positions of the donor plants and the assumed specific function of the PEPC isoforms. Altogether, the study further strengthens the view that PEPC sequences can provide interesting information for the reconstruction of phylogenetic relations between organisms and metabolic pathways. To avoid confusion in future discussion, we propose a new nomenclature for the denotation of PEPC isoforms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号