首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   362篇
  免费   17篇
  379篇
  2023年   2篇
  2022年   13篇
  2021年   10篇
  2020年   8篇
  2019年   9篇
  2018年   12篇
  2017年   15篇
  2016年   18篇
  2015年   20篇
  2014年   11篇
  2013年   29篇
  2012年   29篇
  2011年   34篇
  2010年   26篇
  2009年   13篇
  2008年   17篇
  2007年   22篇
  2006年   17篇
  2005年   14篇
  2004年   9篇
  2003年   3篇
  2002年   8篇
  2001年   3篇
  2000年   1篇
  1999年   3篇
  1998年   2篇
  1997年   2篇
  1996年   2篇
  1995年   2篇
  1993年   3篇
  1992年   1篇
  1991年   1篇
  1988年   1篇
  1985年   1篇
  1984年   6篇
  1978年   1篇
  1977年   2篇
  1976年   3篇
  1972年   2篇
  1970年   2篇
  1969年   1篇
  1965年   1篇
排序方式: 共有379条查询结果,搜索用时 0 毫秒
41.
A previously unknown genetic defect in magnesium metabolism (i.e., the magnesium-binding defect [MgBD]) was found to be associated with the cause of “salt-sensitive” essential hypertension in humans and rats. It inhibits the entrance of Mg2+ into the cell so that the intracellular concentrations of Mg2+ and MgATP2− are decreased. Consequently, the 300 enzyme reactions in the cell, especially the 100 that either use or produce MgATP2−, are inhibited. Thus, because the extrusion of intracellular Na+ requires MgATP2−, hypertension results when the involved MgATP2− requiring enzyme is inhibited. The MgBD is corrected by the tachykinin substance P, which occurs in normal blood plasma, and by the pentapeptide and its contained tetrapeptide, which are released from the C-terminal region of substance P by plasma aminopeptidases. In vivo, the intravenous administration of the tetrapeptide corrects the hypertension and the MgBD as well. The MgBD also occurs in type 2 diabetes mellitus and, thus, the decreased intracellular concentrations of Mg2+ and MgATP2− ions appear to be involved also in the cause of this disease, which is reputed to be the fifth most deadly disease in the world.  相似文献   
42.
Buffaloes account for more than 56% of total milk production in India. Cyclic remodeling of mammary glands of human, mice, cow, sheep, and goat is determined by mammary stem cells. It is logical to assume that buffalo mammary gland will have mammary stem/progenitor cells. Thus far, no report exists on identification of buffalo mammary stem cells. Hepatocyte nuclear factor 4 alpha (HNF4A) is a candidate marker for hepatic progenitor cells and has recently been suggested as a marker of bovine mammary stem/progenitor cells. We hypothesized that (1 Pasha TN, Hayat Z. Present situation and future perspective of buffalo production in Asia. J Anim Plant Sci 2012; 22(3 supple.):250256. [Google Scholar]) HNF4A identifies putative buffalo mammary stem/progenitor cells and (2 NDDB. National Dairy Development Board. 2015. http://www.nddb.org/English/Statistics/Pages/Milk-Production.aspx. Accessed May 10, 2015. [Google Scholar]) the number of HNF4A-positive cells increases during mastitis. Sixteen buffalo mammary samples were collected from a local slaughterhouse. Hematoxylin and eosin staining were performed on 5-micron thick sections and on the basis of gross examination and histomorphology of the mammary glands, physiological stages of the animals were estimated as non-lactating (n = 4), mastitis (n = 9), and prepubertal (n = 3). In total, 24048 cells were counted (5–10 microscopic fields/animal; n = 16 animals) of which, 40% cells were mammary epithelial cells (MEC) and 60% cells were the stromal cells. The percentage of MEC in non-lactating animals was higher compared to mastitic animals (47.3% vs. 37.3%), which was likely due to loss of MEC in mastitis. HNF4A staining was observed in nuclei of MEC of ducts, alveoli, and stromal cells. Basal location and low frequency of HNF4A-positive MEC (ranges from 0.4–4.5%) were consistent with stem cell characteristics. Preliminary study showed coexpression of HNF4A with MSI1 (a mammary stem cell marker in sheep), suggesting HNF4A was likely to be a putative mammary stem/progenitor cell marker in buffalo. HNF4A-positive MEC (basal and luminal; light and dark stained) tended to be higher in non-lactating than the mastitic animals (8.73 ± 1.71% vs. 4.29 ± 1.19%; P = 0.07). The first hypothesis that HNF4A identify putative mammary stem/progenitor cells was confirmed but the second hypothesis that the number of mammary stem/progenitor cells decreases during mastitis was unsupported. This is the first report outlining the expression of HNF4A and identification of putative mammary stem/progenitor cells in buffalo mammary gland.  相似文献   
43.
44.
The study was undertaken to investigate the effect of zinc (Zn) on glutathione S-transferase (GST) and superoxide dismutases (SOD) activities and on the expressions of cytosolic Cu, Zn-SOD (SOD1), mitochondrial Mn-SOD (SOD2), γ-glutamyl cysteine synthetase (γ-GCS) and heme oxygenase-1 (HO-1) in the nigrostriatal tissue of rats. Additionally, Zn-induced alterations in the neurobehavioral parameters, lipid peroxidation (LPO), striatal dopamine and its metabolites and tyrosine hydroxylase (TH) protein expression were measured to assess their correlations with the oxidative stress. Zn exposure reduced the locomotor activity, rotarod performance, striatal dopamine and its metabolites and TH protein expression. LPO, total SOD, SOD1 and SOD2 activities were increased while GST and catalase were reduced in a dose and time dependent manner. Expressions of SOD1 and HO-1 were increased while no change was observed in SOD2 and γ-GCS expressions. The results obtained suggest that Zn-induced augmentation of total SOD, SOD1, SOD2 and HO-1 was associated with increased oxidative stress and neurodegenerative indexes indicating the involvement of both cytosolic and mitochondrial machinery in Zn-induced oxidative stress leading to dopaminergic neurodegeneration.  相似文献   
45.
A recent pediatric-focused genome-wide association study has implicated three novel susceptibility loci for Crohn’ disease (CD).We aimed to investigate whether the three recently reported and other previously reported genes/loci were also associated with CD in Canadian children. A case–control design was implemented at three pediatric gastroenterology clinics in Canada. Children <19 years of age with a confirmed diagnosis of CD were recruited along with controls. Single nucleotide polymorphisms (SNPs) in 19 reported genes/loci were genotyped. Associations between individual SNPs and CD were examined. A total of 563 cases and 553 controls were studied. The mean (±SD) age of the cases was 12.3 (±3.2) years. Most cases were male (56.0%), had ileo-colonic disease (L3 ± L4, 48.8%) and inflammatory behavior (B1 ± p, 87.9%) at diagnosis. Allelic association analysis (two-tailed) showed that 8 of the 19 targeted SNPs were significantly associated with overall susceptibility for CD. Associations with one additional SNP was borderline non-significant. Significantly associated SNPs included SNPs rs1250550 (p = 0.026) and rs8049439 (p = 0.04), recently reported to be specifically associated with pediatric-onset CD.Based on the results, we confirmed associations between two of the three novel pediatric-CD loci and other regions reported for associations with either pediatric and/or adult-onset CD.  相似文献   
46.
Commercial cultivation of Spirulina sp. is highly popular due to the presence of high amount of C‐phycocyanin (C‐PC ) and other valuable chemicals like carotenoids and γ‐linolenic acid. In this study, the pH and the concentrations of nitrogen and carbon source were manipulated to achieve improved cell growth and C‐PC production in NaCl‐tolerant mutant of Spirulina platensis . In this study, highest C‐PC (147 mg · L?1) and biomass (2.83 g · L?1) production was achieved when a NaCl‐tolerant mutant of S. platensis was cultivated in a nitrate and bicarbonate sufficient medium (40 and 60 mM, respectively) at pH 9.0 under phototrophic conditions. Kinetic study of wildtype S. platensis and its NaCl‐tolerant mutant was also done to determine optimum nitrate concentrations for maximum growth and C‐PC production. Kinetic parameter of inhibition (Haldane model) was fitted to the relationship between specific growth rate and substrate concentration obtained from the growth curves. Results showed that the maximum specific growth rate (μmax) for NaCl‐tolerant mutant increased by 17.94% as compared to its wildtype counterpart, with a slight increase in half‐saturation constant (Ks), indicating that this strain could grow well at high concentration of NaNO3. C‐PC production rate (Cmax) in mutant cells increased by 12.2% at almost half the value of Ks as compared to its wildtype counterpart. Moreover, the inhibition constant (Ki) value was 207.85% higher in NaCl‐tolerant mutant as compared to its wildtype strain, suggesting its ability to produce C‐PC even at high concentrations of NaNO3.  相似文献   
47.
48.
The use of medicinal plants for different therapeutic values is well documented in African continent. African diverse biodiversity hotspots provide a wide range of endemic species, which ensures a potential medicinal value. The feasible conservation approach and sustainable harvesting for the medicinal species remains a huge challenge. However, conservation approach through different biotechnological tools such as micropropagation, somatic embryogenesis, synthetic seed production, hairy root culture, molecular markers based study and cryopreservation of endemic African medicinal species is much crucial. In this review, an attempt has been made to provide different in vitro biotechnological approaches for the conservation of African medicinal species. The present review will be helpful in further technology development and deciding the priorities at decision-making levels for in vitro conservation and sustainable use of African medicinal species.  相似文献   
49.
Oxidative stress and Cu2+ have been implicated in several neurodegenerative diseases and in cataract. Oxidative stress, as well as Cu2+, is also known to induce the expression of the small heat shock proteins α-crystallins. However, the role of α-crystallins in oxidative stress and in Cu2+-mediated processes is not clearly understood. We demonstrate using fluorescence and isothermal titration calorimetry that α-crystallins (αA- and αB-crystallin and its phosphorylation mimic, 3DαB-crystallin) bind Cu2+ with close to picomolar range affinity. The presence of other tested divalent cations such as Zn2+, Mg2+, and Ca2+ does not affect Cu2+ binding, indicating selectivity of the Cu2+-binding site(s) in α-crystallins. Cu2+ binding induces structural changes and increase in the hydrodynamic radii of α-crystallins. Cu2+ binding increases the stability of α-crystallins towards guanidinium chloride-induced unfolding. Chaperone activity of αA-crystallin increases significantly upon Cu2+ binding. α-Crystallins rescue amyloid beta peptide, Aβ1-40, from Cu2+-induced aggregation in vitro. α-Crystallins inhibit Cu2+-induced oxidation of ascorbate and, hence, prevent the generation of reactive oxygen species. Interestingly, α-synuclein, a Cu2+-binding protein, does not inhibit this oxidation process significantly. We find that the Cu2+-sequestering (or redox-silencing) property of α-crystallins confers cytoprotection. To the best of our knowledge, this is the first study to reveal high affinity (close to picomolar) for Cu2+ binding and redox silencing of Cu2+ by any heat shock protein. Thus, our study ascribes a novel functional role to α-crystallins in Cu2+ homeostasis and helps in understanding their protective role in neurodegenerative diseases and cataract.  相似文献   
50.
Lung surfactant secretion in alveolar type II cells occurs following lamellar body fusion with plasma membrane. Annexin A7 is a Ca2+-dependent membrane-binding protein that is postulated to promote membrane fusion during exocytosis in some cell types including type II cells. Since annexin A7 preferably binds to lamellar body membranes, we postulated that specific lipids could modify the mode of annexin A7 interaction with membranes and its membrane fusion activity. Initial studies with phospholipid vesicles containing phosphatidylserine and other lipids showed that certain lipids affected protein interaction with vesicle membranes as determined by change in protein tryptophan fluorescence, protein interaction with trans membranes, and by protein sensitivity to limited proteolysis. The presence of signaling lipids, diacylglycerol or phosphatidylinositol-4,5-bisphosphate, as minor components also modified the lipid vesicle effect on these characteristics and membrane fusion activity of annexin A7. In vitro incubation of lamellar bodies with diacylglycerol or phosphatidylinositol-4,5-bisphosphate caused their enrichment with either lipid, and increased the annexin A7 and Ca2+-mediated fusion of lamellar bodies. Treatment of isolated lung lamellar bodies with phosphatidylinositol- or phosphatidylcholine phospholipase C to increase diacylglycerol, without or with preincubation with phosphatidylinositol-4,5-bisphosphate, augmented the fusion activity of annexin A7. Thus, increased diacylglycerol in lamellar bodies following cell stimulation with secretagogues may enhance membrane fusion activity of annexin A7.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号