首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1281篇
  免费   87篇
  国内免费   1篇
  1369篇
  2022年   13篇
  2021年   33篇
  2020年   11篇
  2019年   9篇
  2018年   21篇
  2017年   21篇
  2016年   32篇
  2015年   55篇
  2014年   57篇
  2013年   85篇
  2012年   86篇
  2011年   112篇
  2010年   63篇
  2009年   48篇
  2008年   74篇
  2007年   49篇
  2006年   51篇
  2005年   59篇
  2004年   56篇
  2003年   31篇
  2002年   42篇
  2001年   23篇
  2000年   17篇
  1999年   14篇
  1998年   10篇
  1997年   13篇
  1996年   9篇
  1992年   11篇
  1991年   8篇
  1990年   13篇
  1989年   12篇
  1988年   13篇
  1987年   9篇
  1986年   8篇
  1985年   12篇
  1984年   11篇
  1983年   9篇
  1982年   9篇
  1981年   15篇
  1980年   18篇
  1978年   13篇
  1977年   10篇
  1976年   13篇
  1975年   10篇
  1974年   7篇
  1973年   10篇
  1971年   8篇
  1970年   8篇
  1968年   6篇
  1966年   6篇
排序方式: 共有1369条查询结果,搜索用时 9 毫秒
81.
Perfringolysin O (PFO), a cytolytic toxin secreted by pathogenic Clostridium perfringens, forms large pores in cholesterol-containing membranes. Domain 4 (D4) of the protein interacts first with the membrane and is responsible for cholesterol recognition. By using several independent fluorescence techniques, we have determined the topography of D4 in the membrane-inserted oligomeric form of the toxin. Only the short hydrophobic loops at the tip of the D4 beta-sandwich are exposed to the bilayer interior, whereas the remainder of D4 projects from the membrane surface and is surrounded by water, making little or no contact with adjacent protein monomers in the oligomer. Thus, a limited interaction of D4 with the bilayer core seems to be sufficient to accomplish cholesterol recognition and initial binding of PFO to the membrane. Furthermore, D4 serves as the fulcrum around which extensive structural changes occur during the formation and insertion of the large transmembrane beta-barrel into the bilayer.  相似文献   
82.
Mitochondria,nitric oxide,and cardiovascular dysfunction   总被引:6,自引:0,他引:6  
Cardiovascular diseases encompass a wide spectrum of abnormalities with diverse etiologies. The molecular mechanisms underlying these disorders include a variety of responses such as changes in nitric oxide- (NO) dependent cell signaling and increased apoptosis. An interesting aspect that has received little or no attention is the role mitochondria may play in the vascular changes that occur in both atherosclerosis and hypertension. With the changing perspective of the organelle from simply a role in metabolism to a contributor to signal transduction pathways, the role of mitochondria in cells with relatively low energy demands such as the endothelium has become important to understand. In this context, the definition of the NO-cytochrome c oxidase signaling pathway and the influence this has on cytochrome c release is particularly important in understanding apoptotic mechanisms involving the mitochondrion. This review examines the role of compromised mitochondrial function in a variety of vascular pathologies and the modulation of these effects by NO. The interaction of NO with the various mitochondrial respiratory complexes and the role NO plays in modulating mitochondrial-mediated apoptosis in these systems will be discussed.  相似文献   
83.
Although yeasts lack some elements of the complex apoptotic machinery of metazoan cells, recent studies show that many features of apoptosis, including a caspase-like activity, can be induced in these organisms by DNA damage and other apoptotic triggers. These remarkable findings provide a compelling argument for increased efforts to bring the powerful genetic approaches available to yeast researchers more directly to bear on questions related to apoptosis and its induction or inhibition by drugs. Yeasts may provide a particularly useful model for understanding connections between DNA damage, cell cycle regulation and apoptosis. Here we summarize these recent findings and explore their implications, particularly for the development of more effective therapeutic strategies for treating cancer.  相似文献   
84.
85.
Phosphorylation of serine 51 residue on the alpha-subunit of eukaryotic initiation factor 2 (eIF2alpha) inhibits the guanine nucleotide exchange (GNE) activity of eIF2B, presumably, by forming a tight complex with eIF2B. Inhibition of the GNE activity of eIF2B leads to impairment in eIF2 recycling and protein synthesis. We have partially purified the wild-type (wt) and mutants of eIF2alpha in which the serine 51 residue was replaced with alanine (51A mutant) or aspartic acid (51D mutant) in the baculovirus system. Analysis of these mutants has provided novel insight into the role of 51 serine in the interaction between eIF2 and eIF2B. Neither mutant was phosphorylated in vitro. Both mutants decreased eIF2alpha phosphorylation occurring in hemin and poly(IC)-treated reticulocyte lysates due to the activation of double-stranded RNA-dependent protein kinase (PKR). However, addition of 51D, but not 51A mutant eIF2alpha protein promoted inhibition of the GNE activity of eIF2B in hemin-supplemented rabbit reticulocyte lysates in which relatively little or no endogenous eIF2alpha phosphorylation occurred. The 51D mutant enhanced the inhibition in GNE activity of eIF2B that occurred in hemin and poly(IC)-treated reticulocyte lysates where PKR is active. Our results show that the increased interaction between eIF2 and eIF2B protein, occurring in reticulocyte lysates due to increased eIF2alpha phosphorylation, is decreased significantly by the addition of mutant 51A protein but not 51D. Consistent with the idea that mutant 51D protein behaves like a phosphorylated eIF2alpha, addition of this partially purified recombinant subunit, but not 51A or wt eIF2alpha, increases the interaction between eIF2 and 2B proteins in actively translating hemin-supplemented lysates. These findings support the idea that phosphorylation of the serine 51 residue in eIF2alpha promotes complex formation between eIF2alpha(P) and eIF2B and thereby inhibits the GNE activity of eIF2B.  相似文献   
86.
Chemosensory proteins from the proboscis of mamestra brassicae   总被引:7,自引:0,他引:7  
Soluble, low molecular weight proteins were immunodetected in proboscis extracts of Mamestra brassicae males by Western blot, using antibodies raised against the general odorant-binding protein of the moth Antheraea polyphemus. The same antibodies weakly labelled the sensillum lymph and subcuticular space of sensilla styloconica on ultrathin sections of the proboscis. The morphology of sensilla styloconica is described. The immunodetected proteins yielded several N-terminal sequences, three of which showed strong affinity for tritiated analogues of pheromonal compounds of M. brassicae in binding assays. The cDNAs coding for these sequences were cloned and it was shown that the new proteins are related to the OS-D protein of DROSOPHILA: They are named chemosensory proteins (CSP-MBRA:A1-CSP-MBRA:A5 and CSP-MBRA:B1 and CSP-MBRA:B2) and may have an odorant-binding protein-like function. A common localization in both olfaction and taste organs suggests a physiological role depending on the cellular environment.  相似文献   
87.
Transgenic groundnut (Arachis hypogaea L.) plants were produced efficiently by inoculating different explants withAgrobacterium tumefaciens strain LBA4404 harbouring a binary vector pBM21 containinguidA (GUS) andnptll (neomycin phosphotransferase) genes. Genetic transformation frequency was found to be high with cotyledonary node explants followed by 4 d cocultivation. This method required 3 days of precultivation period before cocultivation withAgrobacterium. A concentration of 75 mg/l kanamycin sulfate was added to regeneration medium in order to select transformed shoots. Shoot regeneration occurred within 4 weeks; excised shoots were rooted on MS medium containing 50 mg/I kanamycin sulfate before transferring to soil. The expression of GUS gene (uidA gene) in the regenerated plants was verified by histochemical and fluorimetric assays. The presence ofuidA andnptll genes in the putative transgenic lines was confirmed by PCR analysis. Insertion of thenptll gene in the nuclear genome of transgenic plants was verified by genomic Southern hybridization analysis. Factors affecting transformation efficiency are discussed.  相似文献   
88.
Buoyant density gradient analysis of nuclear DNA of fourCucumis species showed asymmetric profiles indicating the presence of satellite DNA sequences in the nuclear genome. A highly repeated satellite DNA sequence was isolated from the nuclear genome ofC. metuliferus under neutral CsCl gradients. The satellite DNA constitutes about 4.96% of total nuclear DNA and has 48.06% guanine plus cytosine content. The kinetic complexity of satellite DNA is 150 times smaller than T4 phage DNA and the base sequence divergence is low.3H-labeled cRNA transcribed from satellite DNA hybridized clearly to six heterochromatic knobs of pachytene chromosomes. The knob heterochromatin can be distinguished by Giemsa C-banding of pachytene chromosomes. Restriction enzyme analysis and Southern blot hybridization indicated that the satellite DNA has a tandem arrangement and predominantly formed two bands of size 210 and 151 base pairs. Absence of knob satellite DNA ofC. metuliferus in the nuclear genomes ofC. melo, C. anguria andC. sativus showed thatC. metuliferus remains isolated within the genusCucumis.  相似文献   
89.
Inflammasomes are protein complexes formed in response to tissue injury and inflammation to regulate the formation of proinflammatory cytokines. Nod-like receptor pyrin domain containing 3 (NLRP3) is one such inflammasome involved in pancreatic inflammation. Caspase activation recruitment domain (CARD) is an interaction motif found in all the major components of NLRP3 inflammasome such as apoptosis associated speck-like CARD containing protein (ASC) and procaspase-1. NLRP3 activates procaspase-1 with the concerted action of CARD domain of ASC. In the present study, the effect of rutin, a natural flavonoid on the expression of ASC of NLRP3, was investigated in rats treated with ethanol (EtOH) and cerulein (Cer). Male albino Wistar rats were divided into four groups. Groups 1 and 2 rats were fed normal diet, whereas groups 3 and 4 rats were fed EtOH (36 % of total calories) containing diet for a total period of 5 weeks and also administered Cer (20 µg/kg body weight i.p.) thrice weekly for the last 3 weeks. In addition, groups 2 and 4 rats received daily 100 mg/kg body weight of rutin from third week. Rutin co-administration significantly decreased the level of pancreatic marker enzymes, oxidative stress markers, inflammatory markers, mRNA expression of caspase-1, cytokines, ASC–NLRP3, and protein expression of caspase-1 and ASC in rats received EtOH–Cer. The results of the study revealed that rutin can reduce inflammation in pancreas probably by influencing the down regulation of ASC–NLRP3 which might result in the reduced activation of caspase-1 and controlled cytokine production.  相似文献   
90.
Pathogenesis of diabetes mellitus involves scores of different factors, out of which Glucagon like factor-1 (GLP-1) plays a foremost role. GLP-1 is a pepti  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号