首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1281篇
  免费   87篇
  国内免费   1篇
  1369篇
  2022年   13篇
  2021年   33篇
  2020年   11篇
  2019年   9篇
  2018年   21篇
  2017年   21篇
  2016年   32篇
  2015年   55篇
  2014年   57篇
  2013年   85篇
  2012年   86篇
  2011年   112篇
  2010年   63篇
  2009年   48篇
  2008年   74篇
  2007年   49篇
  2006年   51篇
  2005年   59篇
  2004年   56篇
  2003年   31篇
  2002年   42篇
  2001年   23篇
  2000年   17篇
  1999年   14篇
  1998年   10篇
  1997年   13篇
  1996年   9篇
  1992年   11篇
  1991年   8篇
  1990年   13篇
  1989年   12篇
  1988年   13篇
  1987年   9篇
  1986年   8篇
  1985年   12篇
  1984年   11篇
  1983年   9篇
  1982年   9篇
  1981年   15篇
  1980年   18篇
  1978年   13篇
  1977年   10篇
  1976年   13篇
  1975年   10篇
  1974年   7篇
  1973年   10篇
  1971年   8篇
  1970年   8篇
  1968年   6篇
  1966年   6篇
排序方式: 共有1369条查询结果,搜索用时 31 毫秒
131.
132.
BacA is an integral membrane protein, the mutation of which leads to increased resistance to the antimicrobial peptides bleomycin and Bac71-35 and a greater sensitivity to SDS and vancomycin in Rhizobium leguminosarum bv. viciae, R. leguminosarum bv. phaseoli, and Rhizobium etli. The growth of Rhizobium strains on dicarboxylates as a sole carbon source was impaired in bacA mutants but was overcome by elevating the calcium level. While bacA mutants elicited indeterminate nodule formation on peas, which belong to the galegoid tribe of legumes, bacteria lysed after release from infection threads and mature bacteroids were not formed. Microarray analysis revealed almost no change in a bacA mutant of R. leguminosarum bv. viciae in free-living culture. In contrast, 45 genes were more-than 3-fold upregulated in a bacA mutant isolated from pea nodules. Almost half of these genes code for cell membrane components, suggesting that BacA is crucial to alterations that occur in the cell envelope during bacteroid development. In stark contrast, bacA mutants of R. leguminosarum bv. phaseoli and R. etli elicited the formation of normal determinate nodules on their bean host, which belongs to the phaseoloid tribe of legumes. Bacteroids from these nodules were indistinguishable from the wild type in morphology and nitrogen fixation. Thus, while bacA mutants of bacteria that infect galegoid or phaseoloid legumes have similar phenotypes in free-living culture, BacA is essential only for bacteroid development in indeterminate galegoid nodules.Bacteria of the family Rhizobiaceae are alphaproteobacteria, which form a species-specific symbiotic relationship with leguminous plants. Plants release flavonoids that typically induce the synthesis of lipochitooligosaccharides by rhizobia, which in turn initiate a signaling cascade in the plant, leading to nodule formation (34). Rhizobia become trapped by curling root hairs, which they enter via infection threads that grow and ramify into the root cortex, where newly induced meristematic cells form the nodule (34). Bacteria are released from infection threads and engulfed by a plant-derived symbiosome membrane. In galegoid legumes (a clade in the subfamily Papilionoideae, such as Medicago, Pisum, or Vicia), which form indeterminate nodules that have a persistent meristem, bacteria undergo the endoreduplication of their chromosome, resulting in dramatic increases in size, shape, and DNA content to become terminally differentiated bacteroids (32). However, in phaseoloid legumes (e.g., lotus, bean, and soybean), which form determinate nodules with a transient meristem, bacteria do not undergo endoreduplication and therefore do not enlarge substantially. These bacteroids retain a normal DNA content and can regrow after isolation from nodules (32). The endoreduplication of bacteroids is controlled by the plant, and it is believed that nodule-specific cysteine-rich (NCR) peptides, which are made in indeterminate, but not in determinate, nodules, may be responsible for inducing and maintaining bacteroid development (31, 32). Finally, mature bacteroids receive dicarboxylic acids from the plant, which they use as a carbon, reductant, and energy source for the reduction of N2 to ammonia (38). The ammonia is secreted to the plant, where it is assimilated into amino acids or ureides, depending on the legume, for export to the shoot.Sinorhizobium meliloti BacA protein was the first bacterial factor identified to be essential for bacteroid development (15). More recently, it also has been shown to be essential for the Mesorhizobium-Astragalus symbiosis (42). S. meliloti elicits the formation of indeterminate nodules on alfalfa, and while S. meliloti bacA null mutants induce nodule formation, bacteria lyse soon after endocytosis but prior to bacteroid differentiation (15, 20). BacA is a cytoplasmic membrane protein that shares 64% identity with SbmA from Escherichia coli (15, 25). SbmA/BacA proteins belong to the ATP binding cassette (ABC) superfamily and share sequence similarity with a family of eukaryotic peroxisomal membrane proteins, including the human adrenoleukodystrophy protein, which is required for the efficient transport of very-long-chain fatty acids (VLCFAs) out of the cytoplasm (9). Consistent with this, S. meliloti BacA is required for the complete modification of lipid A with VLCFAs (9). However, since S. meliloti mutants, which are directly involved in the biosynthesis of VLCFA-modified lipid A, show bacteroid abnormalities but still can form a successful alfalfa symbiosis, the effect of BacA on lipid A VLCFA modification does not fully account for its essential role in bacteroid development (10, 11, 16). Strains mutated in bacA also have an increased resistance to the glycopeptide bleomycin, a low-level resistance to aminoglycoside antibiotics, and an increased sensitivity to ethanol, sodium dodecyl sulfate (SDS), and deoxycholate relative to the sensitivities of the parent strain (12, 18, 25). More recently it has been shown that an S. meliloti bacA null mutant has an increased resistance to a truncated form of a eukaryotic proline-rich peptide, Bac71-16, and was unable to accumulate a fluorescently labeled form of this peptide (28). This finding, combined with the increased resistance of an S. meliloti bacA null mutant to bleomycin, led to the hypothesis that BacA is itself a putative peptide transporter (BacA mediated) or able to alter the activity of such a transporter (BacA influenced) (11, 15, 18, 28).As the increased resistance of the S. meliloti bacA null mutant to bleomycin and Bac71-16 appears to be independent of the VLCFA modification of lipid A (11, 28), this suggested that either BacA-mediated or BacA-influenced peptide uptake into S. meliloti plays a role in bacteroid development. Since indeterminate galegoid nodules contain hundreds of NCR peptides, whereas determinate phaseoloid nodules lack these host peptides (31), we considered it important to assess the role of BacA in bacteroid development during the formation of both nodule types.Here, we show that bacA mutants of Rhizobium leguminosarum bv. viciae strains 3841 and A34 failed to develop bacteroids and did not fix nitrogen in indeterminate pea (Pisum sativum) nodules. However, bacA mutants of both R. leguminosarum bv. phaseoli 4292 and Rhizobium etli CE3 formed normal bacteroids and fixed nitrogen at wild-type rates in determinate bean (Phaseolus vulgaris) nodules. This is consistent with BacA being a key component of bacteroid development in indeterminate galegoid nodules that is not required for functional bacteroid formation in determinate phaseoloid nodules.  相似文献   
133.
134.
KDN (Deaminoneuraminic acid, or deaminated neuraminic acid) is a minor but biosynthetically independent member of the sialic acid. Human occurrence of KDN has already been established, although its level is so little that it is often undetectable by conventional sialic acid analysis. Elevated expression of KDN in fetal cord blood cells and some malignant tumor cells have been reported. However, in mammalian cells and tissues KDN mostly occurs as the free sugar and little occurred conjugated to glycolipids and/or glycoproteins. A positive correlation between the ratio of free KDN/free Neu5Ac in ovarian adenocarcinomas and the stage of malignancy has been noted for diagnostic use. We hypothesized that elevated expression of KDN in mammalian systems may be closely related to elevated activities of enzymes involved in the formation of sialoglycoconjugates and/or aberrant supply of the precursor sugar, mannose, used in the biosynthesis of KDN. In this study we used human ovarian teratocarcinoma cells PA-1 to further analyze KDN expression in human cells. Major findings reported in this paper are, (i) a 30 kDa KDN-glycoprotein immunostainable with monoclonal antibody, mAb.kdn3G, (specific for the KDNα2 → 3Galβ1→ epitope) and sensitive to KDNase was identified in the membrane fraction of the cell: (ii) a 49 kDa KDN-glycoprotein that is not reactive with mAb.kdn3G but is sensitive to KDNase was identified in the soluble fraction: and (iii) PA-1 cells showed unique response to mannose added to the growth medium in that the levels of both free and bound forms of KDN are elevated. This is the first report on the identification of mammalian KDN-glycoproteins by chemical and biochemical methods.  相似文献   
135.
136.
137.

Background

Patients with aero-digestive malignancy will often require a feeding gastrostomy during their treatment to maintain their nutritional status. These are usually placed percutaneously using an endoscopic technique.

Case presentation

A fifty-six year old male underwent placement of a percutaneous gastrostomy (PEG) prior to commencement of his treatment for an oral squamous cell carcinoma. The treatment for this was locally curative. However, he developed a metastasis at the site of his PEG tube. This was excised en-bloc with the anterior gastric and abdominal walls.

Conclusion

Tumour implantation into wounds has been previously reported. In this case the direct trauma of passing the PEG tube through the oropharynx led to implantation of cells in the anterior abdominal wall. In these cases laparoscopic placement may be more beneficial to avoid this problem.  相似文献   
138.
Gastric cancer (GC) is a lethal malignancy and the second most common cause of cancer-related deaths. Although treatment options such as chemotherapy, radiotherapy, and surgery have led to a decline in the mortality rate due to GC, chemoresistance remains as one of the major causes for poor prognosis and high recurrence rate. In this study, we investigated the potential effects of isorhamnetin (IH), a 3′-O-methylated metabolite of quercetin on the peroxisome proliferator-activated receptor γ (PPAR-γ) signaling cascade using proteomics technology platform, GC cell lines, and xenograft mice model. We observed that IH exerted a strong antiproliferative effect and increased cytotoxicity in combination with chemotherapeutic drugs. IH also inhibited the migratory/invasive properties of GC cells, which could be reversed in the presence of PPAR-γ inhibitor. We found that IH increased PPAR-γ activity and modulated the expression of PPAR-γ regulated genes in GC cells. Also, the increase in PPAR-γ activity was reversed in the presence of PPAR-γ-specific inhibitor and a mutated PPAR-γ dominant negative plasmid, supporting our hypothesis that IH can act as a ligand of PPAR-γ. Using molecular docking analysis, we demonstrate that IH formed interactions with seven polar residues and six nonpolar residues within the ligand-binding pocket of PPAR-γ that are reported to be critical for its activity and could competitively bind to PPAR-γ. IH significantly increased the expression of PPAR-γ in tumor tissues obtained from xenograft model of GC. Overall, our findings clearly indicate that antitumor effects of IH may be mediated through modulation of the PPAR-γ activation pathway in GC.  相似文献   
139.
Defects in the insulin-signaling pathway may lead to the development of skeletal muscle insulin resistance, which is one of the earliest abnormalities detected in individuals with the metabolic syndrome and predisposes them to develop type 2 diabetes. Previous studies have shown that deletion of the mouse sequestosome 1/p62 gene results in mature-onset obesity that progresses to insulin and leptin resistance and, ultimately, type 2 diabetes. Sequestosome 1/p62 is involved in receptor-mediated signal transduction and functions as an intracellular signal modulator or adaptor protein. Insulin receptor substrate-1 (IRS-1) plays a central role in transducing the insulin signal via phosphorylation, protein-protein interactions, and protein modifications. Mapping studies demonstrated that the SH(2) domain at the amino terminus of sequestosome 1/p62 interacts with IRS-1 upon insulin stimulation. Further, IRS-1 interacts with p62 through its YMXM motifs at Tyr-608, Tyr-628, and/or Tyr-658 in a manner similar to its interaction with p85 of phosphoinositol 3-kinase. Overexpression of p62 increased phosphorylation of Akt, GLUT4 translocation, and glucose uptake, providing evidence that p62 participates in the insulin-signaling pathway through its interactions with IRS-1.  相似文献   
140.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号