首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   421篇
  免费   17篇
  438篇
  2023年   1篇
  2022年   5篇
  2021年   9篇
  2020年   4篇
  2019年   11篇
  2018年   8篇
  2017年   8篇
  2016年   11篇
  2015年   9篇
  2014年   13篇
  2013年   23篇
  2012年   30篇
  2011年   29篇
  2010年   23篇
  2009年   17篇
  2008年   14篇
  2007年   21篇
  2006年   16篇
  2005年   16篇
  2004年   20篇
  2003年   14篇
  2002年   16篇
  2001年   3篇
  2000年   8篇
  1999年   6篇
  1998年   4篇
  1997年   6篇
  1996年   5篇
  1995年   4篇
  1994年   7篇
  1993年   8篇
  1992年   9篇
  1991年   3篇
  1990年   4篇
  1989年   5篇
  1988年   4篇
  1987年   2篇
  1986年   5篇
  1985年   14篇
  1984年   10篇
  1981年   1篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1975年   2篇
  1974年   1篇
  1973年   1篇
  1966年   1篇
  1965年   2篇
排序方式: 共有438条查询结果,搜索用时 15 毫秒
81.
Saccharomyces cerevisiae DNA polymerase epsilon (pol epsilon) is essential for chromosomal replication. A major form of pol epsilon purified from yeast consists of at least four subunits: Pol2p, Dpb2p, Dpb3p, and Dpb4p. We have investigated the protein/protein interactions between these polypeptides by using expression of individual subunits in baculovirus-infected Sf9 insect cells and by using the yeast two-hybrid assay. The essential subunits, Pol2p and Dpb2p, interact directly in the absence of the other two subunits, and the C-terminal half of POL2, the only essential portion of Pol2p, is sufficient for interaction with Dpb2p. Dpb3p and Dpb4p, non-essential subunits, also interact directly with each other in the absence of the other two subunits. We propose that Pol2p.Dpb2p and Dpb3p.Dpb4p complexes interact with each other and document several interactions between individual members of the two respective complexes. We present biochemical evidence to support the proposal that pol epsilon may be dimeric in vivo. Gel filtration of the Pol2p.Dpb2p complexes reveals a novel heterotetrameric form, consisting of two heterodimers of Pol2p.Dpb2p. Dpb2p, but not Pol2p, exists as a homodimer, and thus the Pol2p dimerization may be mediated by Dpb2p. The pol2-E and pol2-F mutations that cause replication defects in vivo weaken the interaction between Pol2p and Dpb2p and also reduce dimerization of Pol2p. This suggests, but does not prove, that dimerization may also occur in vivo and be essential for DNA replication.  相似文献   
82.
The nuclearity, bonding and H-bonded networks of copper(I) halide complexes with thiophene-2-carbaldehyde thiosemicarbazones {(C4H3S)HC2N3-N(H)-C1(S)N1HR} are influenced by R substituents at N1 atom. Thiophene-2-carbaldehyde-N1-methyl thiosemicarbazone (HttscMe) or thiophene-2-carbaldehyde-N1-ethyl thiosemicarbazone (HttscEt) have yielded halogen-bridged dinuclear complexes, [Cu2(μ-X)21-S-Htsc)2(Ph3P)2] (Htsc, X: HttscMe, I, 1; Br, 2; Cl, 3; HttscEt, I, 4; Br, 5; Cl, 6), while thiophene-2-carbaldehyde-N1-phenyl thiosemicarbazone (HttscPh) has yielded mononuclear complexes, [CuX(η1-S-HttscPh)2] (X, I, 7a; Br 8; Cl, 9) and a sulfur bridged dinuclear complex, [Cu2(μ-S-HttscPh)21-S-HttscPh)2I2] 7b co-existing with 7a in the same unit cell. These results are in contrast to S-bridged dimers [Cu2(μ-S-Httsc)21-Br)2(Ph3P)2] · 2H2O and [Cu2(μ-S-Httsc)21-Cl)2(Ph3P)2] · 2CH3CN obtained for R = H and X = Cl, Br (Httsc = thiophene-2-carbaldehyde thiosemicarbazone) as reported earlier. The intermolecular CHPh?π interaction in 1-3 (2.797 Å, 1; 3.264 Å, 2; 3.257 Å, 3) have formed linear polymers, whereas the CHPh?X and N3?HCH interactions in 4-6 (2.791, 2.69 Å, 5; 2.776, 2.745 Å, 6, respectively) have led to the formation of H-bonded 2D polymer. The PhN1H?π, interactions (2.547 Å, 8, 2.599 Å, 9) have formed H-bonded dimers only. The Cu?Cu separations are 3.221-3.404 Å (1-6).  相似文献   
83.
84.
Skeletal muscle atrophy/wasting is associated with impaired protein metabolism in diverse physiological and pathophysiological conditions. Elevated levels of reactive oxygen species (ROS), disturbed redox status, and weakened antioxidant defense system are the major contributing factors toward atrophy. Regulation of protein metabolism by controlling ROS levels and its associated catabolic pathways may help in treating atrophy and related clinical conditions. Although cinnamaldehyde (CNA) enjoys the established status of antioxidant and its role in ROS management is reported, impact of CNA on skeletal muscle atrophy and related pathways is still unexplored. In the current study, the impact of CNA on C2C12 myotubes and the possible protection of cultured cells from H 2O 2-induced atrophy is examined. Myotubes were treated with H 2O 2 in the presence and absence of CNA and the changes in the antioxidative, proteolytic systems, and mitochondrial functions were scored. Morphological analysis showed significant protective effects of CNA on length, diameter, and nuclei fusion index of myotubes. The evaluation of biochemical markers of atrophy; creatine kinase, lactate dehydrogenase, succinate dehydrogenase along with the study of muscle-specific structural protein (i.e., myosin heavy chain-fast [MHCf] type) showed significant protection of proteins by CNA. CNA pretreatment not only checked the activation of proteolytic systems (ubiquitin-proteasome E3-ligases [MuRF1/Atrogin1]), autophagy [Beclin1/LC3B], cathepsin L, calpain, caspase), but also prevented any alteration in the activities of antioxidative defense enzymes (catalase, glutathione- S-transferase, glutathione-peroxidase, superoxide dismutase, glutathione reductase). The results suggest that CNA protects myotubes from H 2O 2-induced atrophy by inhibiting/resisting the amendments in proteolytic systems and maintains cellular redox-balance.  相似文献   
85.
Whole extract of rhizomes of Podophyllum hexandrum has been reported earlier by our group to render whole-body radioprotection. High-altitude P. hexandrum (HAPH) was therefore fractionated using solvents of varying polarity (non-polar to polar) and the different fractions were designated as, n-hexane (HE), chloroform (CE), alcohol (AE), hydro-alcohol (HA) and water (WE). The total polyphenolic content (mg% of quercetin) was determined spectrophotometrically, while. The major constituents present in each fraction were identified and characterized using LC-APCI/MS/MS. In vitro screening of the individual fractions, rich in polyphenols and lignans, revealed several bioactivities of direct relevance to radioprotection e.g. metal-chelation activity, antioxidant activity, DNA protection, inhibition of radiation (250 Gy) and iron/ascorbate-induced lipid peroxidation (LPO). CE exhibited maximum protection to plasmid (pBR322) DNA in the plasmid relaxation assay (68.09% of SC form retention). It also showed maximal metal chelation activity (41.59%), evaluated using 2,2-bipyridyl assay, followed by AE (31.25%), which exhibited maximum antioxidant potential (lowest absorption unit value: 0.0389± 0.00717) in the reducing power assay. AE also maximally inhibited iron/ascorbate-induced and radiation-induced LPO (99.76 and 92.249%, respectively, at 2000 g/ml) in mouse liver homogenate. Under conditions of combined stress (radiation (250 Gy) + iron/ascorbate), at a concentration of 2000 g/ml, HA exhibited higher percentage of inhibition (93.05%) of LPO activity. HA was found to be effective in significantly (p < 0.05) lowering LPO activity over a wide range of concentrations as compared to AE. The present comparative study indicated that alcoholic (AE) and hydro-alcoholic (HA) fractions are the most promising fractions, which can effectively tackle radiation-induced oxidative stress.  相似文献   
86.
Piriformospora indica association has been reported to increase biotic as well as abiotic stress tolerance of its host plants. We analyzed the beneficial effect of P. indica association on rice seedlings during high salt stress conditions (200 and 300 mM NaCl). The growth parameters of rice seedlings such as root and shoot lengths or fresh and dry weights were found to be enhanced in P. indica-inoculated rice seedlings as compared with non-inoculated control seedlings, irrespective of whether they are exposed to salt stress or not. However, salt-stressed seedlings performed much better in the presence of the fungus compared with non-inoculated control seedlings. The photosynthetic pigment content [chlorophyll (Chl) a, Chl b, and carotenoids] was significantly higher in P. indica-inoculated rice seedlings under high salt stress conditions as compared with salt-treated non-inoculated rice seedlings, in which these pigments were found to be decreased. Proline accumulation was also observed during P. indica colonization, which may help the inoculated plants to become salt tolerant. Taken together, P. indica rescues growth diminution of rice seedlings under salt stress.  相似文献   
87.
Simultaneous production of xylanase and pectinase by Bacillus pumilus AJK under submerged fermentation was investigated in this study. Under optimized conditions, it produced 315?±?16 IU/mL acidic xylanase, 290?±?20 IU/mL alkaline xylanase, and 88?±?9 IU/mL pectinase. The production of xylano-pectinolytic enzymes was the highest after inoculating media (containing 2% each of wheat bran and Citrus limetta peel, 0.5% peptone, 10?mM MgSO4, pH 7.0) with 2% of 21-hr-old culture and incubated at 37°C for 60?hr at 200?rpm. Xylanase retained 100% activity from pH 6.0 to10.0 after 3?hr of incubation, while pectinase showed 100% stability from pH 6.0 to 9.0 even after 6?hr of incubation. Cost-effective and concurrent production of xylanase and pectinase by a bacterial isolate in the same production media suggests its potential for various biotechnological applications. This is the first report of simultaneous production of industrially important extracellular xylano-pectinolytic enzymes by B. pumilus.  相似文献   
88.
Liquefying alpha-amylase from Bacillus amyloliquefaciens was inactivated on treatment with N-bromosuccinamide. Preincubation of the enzyme with either of the substrate, or competitive inhibitor provided significant protection against inactivation. The relationship between activity loss and the number of tryptophan residues modified, as well as presence of substrate/inhibitor in the reaction mixture, demonstrated that only one of three modifiable tryptophan residues is at or near the active center. The apparent Km of the modified enzyme for soluble starch increased manifold, thus implicating the sensitive tryptophan residue in the substrate binding region of the enzyme.  相似文献   
89.
The interaction between two group IV metals, the highly toxic lead and the relatively inactive and low toxic zirconium, was studied in the bone marrow chromosomes ofMus musculus in vivo. Low and high doses of zirconium oxychloride were fed orally to the experimental mice (i) 2 h before, (ii) 2 h after or (iii) together with different doses of lead nitrate. Protection against lead-induced clastogenicity was observed only when the lower dose of zirconium was administered prior to lead. All other combinations gave an additive or synergistic effect as was seen by significant increases in the frequencies of chromosomal aberrations.  相似文献   
90.
Summary Modification of liquefying -amylase by diethylpyrocarbonate or its photo-oxidation in the presence of rose bengal caused rapid loss of enzyme activity. The photo-oxidation followed pseudo-first-order kinetics giving maximal value at pH 8.0. The photo-oxidized enzyme showed a characteristic increase in absorbance at 250 nm which was directly proportional to the extent of inactivation. Diethylpyrocarbonate at low concentration at pH 6.0 and 30 ° C completely inactivated a-amylase. Inactivation followed pseudo-first-order kinetics. The reaction order with respect to inactivation by diethylpyrocarbonate was one, thus indicating modification of a single histidine per mole of the enzyme. Diethylpyrocarbonate-modified enzyme showed increased absorbance at 240 nm which was reversed completely upon treatment with NH2OH at 30 °C for 16 hr. Calculating the histidine residues being modified from the increase in absorbance at 240 nm showed that three residues were ethoxyformylated on treatment with diethylpyrocarbonate, of which only one was found at the active site. Substrate and competitive inhibitor protects the enzyme against both, photo-oxidation, and modification by diethylpyrocarbonate, confirming that histidine plays an essential role at the -amylase active site.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号