首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13993篇
  免费   1354篇
  国内免费   295篇
  2023年   82篇
  2022年   175篇
  2021年   379篇
  2020年   262篇
  2019年   313篇
  2018年   313篇
  2017年   285篇
  2016年   468篇
  2015年   690篇
  2014年   731篇
  2013年   867篇
  2012年   1083篇
  2011年   1029篇
  2010年   602篇
  2009年   487篇
  2008年   730篇
  2007年   612篇
  2006年   589篇
  2005年   550篇
  2004年   553篇
  2003年   439篇
  2002年   434篇
  2001年   321篇
  2000年   310篇
  1999年   312篇
  1998年   156篇
  1997年   137篇
  1996年   110篇
  1995年   103篇
  1994年   99篇
  1993年   99篇
  1992年   198篇
  1991年   145篇
  1990年   159篇
  1989年   157篇
  1988年   173篇
  1987年   126篇
  1986年   122篇
  1985年   142篇
  1984年   109篇
  1983年   77篇
  1982年   62篇
  1981年   57篇
  1980年   53篇
  1979年   98篇
  1978年   86篇
  1977年   69篇
  1976年   55篇
  1974年   61篇
  1973年   62篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
931.
Despite extensive annotation by two independent teams, the Helicobacter pylori genome appeared to lack a complete secretion machinery. The use of clinical isolates to substantiate in silico annotation is used here to identify the missing secE component of the major secretion machinery of Helicobacter pylori.  相似文献   
932.
933.
The strong association of type 1 diabetes with specific MHC class II genes, such as I-A(g7) in nonobese diabetic mice and HLA-DQ8 in humans, suggests that MHC class II molecules play an important role in the development of the disease. To test whether human DQ8 molecules could cross the species barrier and functionally replace their murine homolog I-A(g7), we generated DQ8/BDC2.5 transgenic mice. We have shown that BDC2.5 transgenic T cells are selected on DQ8 in the thymus and cause diabetes in a manner similar to that seen when the T cells are selected on H2(g7). Splenocytes from DQ8/BDC2.5 mice also showed reactivity toward islets in vitro as seen in H-2(g7)/BDC2.5 mice. We conclude that DQ8 molecules not only share structural similarity with the murine homolog I-A(g7), but also can cross the species barrier and functionally replace I-A(g7) molecules to stimulate diabetogenic T cells and produce diabetes.  相似文献   
934.
Chao L  Rang CU  Wong LE 《Journal of virology》2002,76(7):3276-3281
When a parent virus replicates inside its host, it must first use its own genome as the template for replication. However, once progeny genomes are produced, the progeny can in turn act as templates. Depending on whether the progeny genomes become templates, the distribution of mutants produced by an infection varies greatly. While information on the distribution is important for many population genetic models, it is also useful for inferring the replication mode of a virus. We have analyzed the distribution of mutants emerging from single bursts in the RNA bacteriophage phi6 and find that the distribution closely matches a Poisson distribution. The match suggests that replication in this bacteriophage is effectively by a stamping machine model in which the parental genome is the main template used for replication. However, because the distribution deviates slightly from a Poisson distribution, the stamping machine is not perfect and some progeny genomes must replicate. By fitting our data to a replication model in which the progeny genomes become replicative at a given rate or probability per round of replication, we estimated the rate to be very low and on the on the order of 10(-4). We discuss whether different replication modes may confer an adaptive advantage to viruses.  相似文献   
935.
Zhang S  Wong L  Meng L  Lemaux PG 《Planta》2002,215(2):191-194
Expression of knotted1 ( kn1) and ZmLEC1, a maize homologue of the Arabidopsis LEAFY COTYLEDON1 ( LEC1) was studied using in situ hybridization during in vitro somatic embryogenesis of maize ( Zea mays L.) genotype Hi-II. Expression of kn1 was initially detected in a small group of cells (5-10) in the somatic embryo proper at the globular stage, in a specific region where the shoot meristem is initiating at the scutellar stage, and specifically in the shoot meristem at the coleoptilar stage. Expression of ZmLEC1 was strongly detected in the entire somatic embryo proper at the globular stage, gradually less in the differentiating scutellum at the scutellar and coleoptilar stages. The results of analyses show that the expression pattern of kn1 during in vitro somatic embryogenesis of maize is similar to that of kn1 observed during zygotic embryo development in maize. The expression pattern of ZmLEC1 in maize during in vitro development is similar to that of LEC1 in Arabidopsis during zygotic embryo development. These observations indicate that in vitro somatic embryogenesis likely proceeds through similar developmental pathways as zygotic embryo development, after somatic cells acquire competence to form embryos. In addition, based on the ZmLEC1 expression pattern, we suggest that expression of ZmLEC1 can be used as a reliable molecular marker for detecting early-stage in vitro somatic embryogenesis in maize.  相似文献   
936.
937.
Recent studies of molecular guidance cues including the Slit family of secreted proteins have provided new insights into the mechanisms of cell migration. Initially discovered in the nervous system, Slit functions through its receptor, Roundabout, and an intracellular signal transduction pathway that includes the Abelson kinase, the Enabled protein, GTPase activating proteins and the Rho family of small GTPases. Interestingly, Slit also appears to use Roundabout to control leukocyte chemotaxis, which occurs in contexts different from neuronal migration, suggesting a fundamental conservation of mechanisms guiding the migration of distinct types of somatic cells.  相似文献   
938.
939.
A novel water-soluble lipopolymer was synthesized by linking cholesteryl chloroformate to the secondary amino groups of branched poly(ethylenimine) (PEI) of 1,800 and 10,000 Da. Conjugation through PEI secondary amines gives this newly synthesized lipopolymer (abbreviated as PEI-Chol) special advantage over our previously synthesized lipopolymers, which utilized the primary amino groups for conjugation, as the primary amino groups have a significant role in DNA condensation. Also, significantly, only one cholesterol molecule was grafted onto each PEI molecule (confirmed by (1)H NMR and MALDI-TOF mass spectrometry), leaving enough space for the steric interactions of the PEI's primary amines with the DNA. The PEI-Chol lipopolymer was characterized for the critical micellar concentration (cmc), buffer capacity, DNA condensation (by band retardation and circular dichroism), in vitro transfection efficiency, and cell viability. The cmcs of PEI-Chol 1,800 and PEI-Chol 10,000 were 496.6 and 1,330.5 microg/mL, respectively. The acid-base titration indicated high buffering capacity of the polymers around the pH range of 5-7, which indicated their potential for buffering in the acidic pH environment of the endosomes. The band retardation studies indicated that efficient condensation of the plasmid DNA could be achieved using these lipopolymers. The circular dichroism spectra indicated a change in DNA conformation and adoption of lower energy state upon condensation with these lipopolymers when an N/P ratio of 2.5/1 or above was formulated. The mean particle size of these complexes was in the range 110-205 nm, except for the complexes prepared using PEI of 1,800 Da, which had a mean particle size of 384 +/- 300 nm. The zeta potential of DNA complexes prepared using PEI-Chol 1,800, PEI-Chol 10,000 and PEI of 1,800, 10,000, and 25,000 Da at an N/P ratio of 15/1 was in the range 23-30 mV and was dependent on the N/P ratios. The in vitro transfection of PEI-Chol/pCMS-EGFP complexes in Jurkat cells showed high levels of expressed Green Fluorescent Protein (GFP) with little toxicity as determined by flow cytometry. These novel water-soluble lipopolymers provided good transfection efficiency with other desirable characteristics such as water solubility, free primary amino groups for efficient DNA condensation and high buffer capacity that indicated the possibility of efficient endosomal release.  相似文献   
940.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号