首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   734篇
  免费   77篇
  国内免费   1篇
  812篇
  2021年   11篇
  2020年   5篇
  2019年   11篇
  2018年   17篇
  2017年   9篇
  2016年   14篇
  2015年   26篇
  2014年   32篇
  2013年   38篇
  2012年   37篇
  2011年   34篇
  2010年   29篇
  2009年   15篇
  2008年   32篇
  2007年   18篇
  2006年   29篇
  2005年   27篇
  2004年   33篇
  2003年   28篇
  2002年   22篇
  2001年   20篇
  2000年   18篇
  1999年   24篇
  1998年   14篇
  1997年   4篇
  1995年   7篇
  1994年   8篇
  1992年   15篇
  1991年   7篇
  1990年   8篇
  1989年   15篇
  1988年   18篇
  1987年   6篇
  1986年   7篇
  1985年   17篇
  1984年   14篇
  1983年   13篇
  1982年   14篇
  1981年   7篇
  1979年   14篇
  1978年   8篇
  1977年   4篇
  1976年   4篇
  1975年   5篇
  1974年   9篇
  1973年   5篇
  1971年   6篇
  1969年   5篇
  1966年   3篇
  1963年   3篇
排序方式: 共有812条查询结果,搜索用时 0 毫秒
71.
Ultrasensitive detection of minute amounts of phosphorylated proteins and peptides is a key requirement for unraveling many of the most important signal transduction pathways in mammalian systems. Protein microarrays are potentially useful tools for sensitive screening of global protein expression and post-translational modifications, such as phosphorylation. However, the analysis of signaling pathways has been hampered by a lack of reagents capable of conveniently detecting the targets of protein kinases. Historically, phosphorylation detection methods have relied upon either radioisotopes ((gamma-(32)P)ATP(gamma-(33)P)ATP labeling) or phosphoamino acid-selective antibodies. Both of these methods suffer from relatively well-known shortcomings. In this study, a small molecule fluorophore phosphosensor technology is described, referred to as Pro-Q Diamond dye, which is capable of ultrasensitive global detection and quantitation of phosphorylated amino acid residues in peptides and proteins displayed on microarrays. The utility of the fluorescent Pro-Q Diamond phosphosensor dye technology is demonstrated using phosphoproteins and phosphopeptides as well as with protein kinase reactions performed in miniaturized microarray assay format. Instead of applying a phosphoamino acid-selective antibody labeled with a fluorescent or enzymatic tag for detection, a small, fluorescent probe is employed as a universal sensor of phosphorylation status. The detection limit for phosphoproteins on a variety of different commercially available protein array substrates was found to be 312-625 fg, depending upon the number of phosphate residues. Characterization of the enzymatic phosphorylation of immobilized peptide targets with Pro-Q Diamond dye readily permits differentiation between specific and non-specific peptide labeling at picogram to subpicogram levels of detection sensitivity.  相似文献   
72.
Lee EG  Kim JH  Shin YS  Shin GW  Suh MD  Kim DY  Kim YH  Kim GS  Jung TS 《Proteomics》2003,3(12):2339-2350
Expressed proteins and antigens from Neospora caninum tachyzoites were studied by two-dimensional gel electrophoresis and immunoblot analysis combined with matrix-assisted laser desorption/ionization-time of flight mass spectrometry. Thirty-one spots corresponding to 20 different proteins were identified from N. caninum tachyzoites by peptide mass fingerprinting. Six proteins were identified from a N. caninum database (NTPase, 14-3-3 protein homologue, NcMIC1, NCDG1, NcGRA1 and NcGRA2), and 11 proteins were identified in closely related species using the T. gondii database (HSP70, HSP60, pyruvate kinase, tubulin alpha- and beta-chain, putative protein disulfide isomerase, enolase, actin, fructose-1,6-bisphosphatase, lactate dehydrogenase and glyceradehyde-3-phosphate dehydrogenase). One hundred and two antigen spots were observed using pH 4-7 IPG strips on immunoblot profiles. Among them, 17 spots corresponding to 11 antigenic proteins were identified from a N. caninum protein map. This study involved the construction of in-depth protein maps for N. caninum tachyzoites, which will be of value for studies of its pathogenesis, drug and vaccine development, and phylogenetic studies.  相似文献   
73.
Two protein families that are critical for vesicle transport are the Syntaxin and Munc18/Sec1 families of proteins. These two molecules form a high affinity complex and play an essential role in vesicle docking and fusion. Munc18c was expressed as an N-terminally His-tagged fusion protein from recombinant baculovirus in Sf9 insect cells. His-tagged Munc18c was purified to homogeneity using both cobalt-chelating affinity chromatography and gel filtration chromatography. With this simple two-step protocol, 3.5 mg of purified Munc18c was obtained from a 1L culture. Further, the N-terminal His-tag could be removed by thrombin cleavage while the tagged protein was bound to metal affinity resin. Recombinant Munc18c produced in this way is functional, in that it forms a stable complex with the SNARE interacting partner, syntaxin4. Thus we have developed a method for producing and purifying large amounts of functional Munc18c--both tagged and detagged--from a baculovirus expression system. We have also developed a method to purify the Munc18c:syntaxin4 complex. These methods will be employed for future functional and structural studies.  相似文献   
74.
Jackson A  Gee VJ  Baker SN  Lemon RN 《Neuron》2003,38(1):115-125
Synchronous firing of motor cortex cells exhibiting postspike facilitation (PSF) or suppression (PSS) of hand muscle EMG was examined to investigate the relationship between synchrony and output connectivity. Recordings were made in macaque monkeys performing a precision grip task. Synchronization was assessed with cross-correlation histograms of the activity from 144 pairs of simultaneously recorded neurons, while spike-triggered averages of EMG defined the muscle field for each cell. Cell pairs with similar muscle fields showed greater synchronization than pairs with nonoverlapping fields. Furthermore, cells with opposing effects in the same muscles exhibited negative synchronization. We conclude that synchrony in motor cortex engages networks of neurons directly controlling the same muscle set, while inhibitory connections exist between neuronal populations with opposing output effects.  相似文献   
75.
Fluorometric calcium measurements have revealed presynaptic residual calcium (Ca(res)) to be an important regulator of synaptic strength. However, in the mammalian brain, it has not been possible to monitor Ca(res) in fibers that project from one brain region to another. Here, we label neuronal projections by injecting dextran-conjugated calcium indicators into brain nuclei in vivo. Currently available dextran conjugates distort Ca(res) due to their high affinity for calcium. Therefore, we synthesized a low-affinity indicator, fluo-4 dextran, that can more accurately measure the amplitude and time course of Ca(res). We then demonstrate the utility of fluo-4 dextran by measuring Ca(res) at climbing fiber presynaptic terminals. This method promises to facilitate the study of many synapses in the mammalian CNS, both in brain slices and in vivo.  相似文献   
76.
Fhit, a member of the histidine triad superfamily of nucleotide-binding proteins, binds and cleaves diadenosine polyphosphates and functions as a tumor suppressor in human epithelial cancers. Function of Fhit in tumor suppression does not require diadenosine polyphosphate cleavage but correlates with the ability to form substrate complexes. As diadenosine polyphosphates are at lower cellular concentrations than mononucleotides, we sought to quantify interactions between Fhit and competitive inhibitors with the use of diadenosine polyphosphate analogs containing fluorophores in place of one nucleoside. Appp-S-(7-diethylamino-4-methyl-3-(4-succinimidylphenyl)) coumarin (ApppAMC), Appp-S-(4-4-difluoro-5,7-dimethyl-4-bora-3a, 4a-diaza-s-indacine-3-yl) methylaminoacetyl (ApppBODIPY), and GpppBODIPY, synthesized in high yield, are effective Fhit substrates, producing AMP or GMP plus fluorophore diphosphates. GpppBODIPY cleavage is accompanied by a 5.4-fold increase in fluorescence because BODIPY fluorescence is quenched by stacking with guanine. Titration of unlabeled diadenosine polyphosphates, inorganic pyrophosphate, mononucleotides, and inorganic phosphate into fluorescent assays provided values of K(m) and K(I) as competitive inhibitors. The data indicate that Fhit discriminates between good substrates via k(cat) and against cellular competitors in equilibrium binding terms. Surprisingly, pyrophosphate competes better than purine mononucleotides.  相似文献   
77.
Restoration is important in urban areas where habitat destruction is greatest. It incorporates many levels of intervention, with creation of new habitat the most extreme form. Most research on habitat creation has been terrestrial, or in marine habitats dominated by large structuring biota, such as mangroves. Intertidal boulder‐fields in urban areas are vulnerable to disturbances and habitat loss, which adversely affect numerous habitat specialists. This study describes experiments in which quarried stones were used to create new habitat outside natural boulder‐fields as a practical approach to restoring habitat. Colonization by specialist fauna and by common algae and invertebrates was measured for a year after deployment. Despite sessile assemblages on new boulders differing from those on natural boulders, common and rare animals rapidly colonized the new habitat. There was no clear succession, but colonization was variable and patchy at all scales examined, although diversities and abundances of some species in this novel habitat matched those of natural boulders within a few months. Rare and common animals generally colonized the new habitat as adults moving in from surrounding areas. Creating new boulder‐fields using quarried rocks is a successful approach to restoration and conservation of fauna where natural boulder‐fields are threatened.  相似文献   
78.
The hybrid sensor SagS plays a central role in the formation of Pseudomonas aeruginosa biofilms, by enabling the switch from the planktonic to the biofilm mode of growth and by facilitating the transition of biofilm cells to a highly tolerant state. In this study, we examined the importance of the SagS key amino acid residues associated with biofilm formation (L154) and antibiotic tolerance (D105) in P. aeruginosa virulence. Recombinant P. aeruginosa ΔsagS and ΔsagS chromosomally expressing wild‐type sagS, or its two variants D105A and L154A, were tested for their potential to form biofilms and cause virulence in plants and mouse models of acute and chronic pneumonia. Although mutation of sagS did not alter P. aeruginosa virulence during acute infections, a significant difference in pathogenicity of sagS mutants was observed during chronic infections, with the L154A variant showing reduced bacterial loads in the chronic pneumonia model, while interference with the D105 residue enhanced the susceptibility of P. aeruginosa biofilms during tobramycin treatment. Our findings suggest that interference with the biofilm or tolerance regulatory circuits of SagS affects P. aeruginosa pathogenicity in chronic but not acute infections, and reveal SagS to be a promising new target to treat P. aeruginosa biofilm infections.  相似文献   
79.
Sec1p/Munc18 (SM) proteins are believed to play an integral role in vesicle transport through their interaction with SNAREs. Different SM proteins have been shown to interact with SNAREs via different mechanisms, leading to the conclusion that their function has diverged. To further explore this notion, in this study, we have examined the molecular interactions between Munc18c and its cognate SNAREs as these molecules are ubiquitously expressed in mammals and likely regulate a universal plasma membrane trafficking step. Thus, Munc18c binds to monomeric syntaxin4 and the N-terminal 29 amino acids of syntaxin4 are necessary for this interaction. We identified key residues in Munc18c and syntaxin4 that determine the N-terminal interaction and that are consistent with the N-terminal binding mode of yeast proteins Sly1p and Sed5p. In addition, Munc18c binds to the syntaxin4/SNAP23/VAMP2 SNARE complex. Pre-assembly of the syntaxin4/Munc18c dimer accelerates the formation of SNARE complex compared to assembly with syntaxin4 alone. These data suggest that Munc18c interacts with its cognate SNAREs in a manner that resembles the yeast proteins Sly1p and Sed5p rather than the mammalian neuronal proteins Munc18a and syntaxin1a. The Munc18c-SNARE interactions described here imply that Munc18c could play a positive regulatory role in SNARE assembly.  相似文献   
80.
Suspension arrays present a promising tool for multiplexed assays in large-scale screening applications. A simple and robust platform for quantitative multiprotein immunoanalysis has been developed with the use of magnetic Co:Nd:Fe(2)O(3)/luminescent Eu:Gd(2)O(3) core/shell nanoparticles (MLNPs) as a carrier. The magnetic properties of the MLNPs allow their manipulation by an external magnetic field in the separation and washing steps in the immunoassay. Their optical properties enable the internal calibration of the detection system. The multiplexed sandwich immunoassay involves dual binding events on the surface of the MLNPs functionalized with the capture antibodies. Secondary antibodies labeled with conventional organic dyes (Alexa Fluor) are used as reporters. The amount of the bound secondary antibody is directly proportional to the concentration of the analyte in the sample. In our approach, the fluorescence intensity of the reporter dye is related to the luminescence signal of the MLNPs. In this way, the intrinsic luminescence of the MLNPs serves as an internal standard in the quantitative immunoassay. The concept is demonstrated for a simultaneous immunoassay for three model proteins (human, rabbit, and mouse IgGs). The method uses a standard bench plate reader. It can be applied to disease diagnostics and to the detection of biological threats.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号