首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1495篇
  免费   147篇
  国内免费   1篇
  2022年   14篇
  2021年   28篇
  2020年   20篇
  2019年   32篇
  2018年   32篇
  2017年   25篇
  2016年   36篇
  2015年   75篇
  2014年   87篇
  2013年   84篇
  2012年   100篇
  2011年   114篇
  2010年   65篇
  2009年   59篇
  2008年   89篇
  2007年   76篇
  2006年   83篇
  2005年   70篇
  2004年   64篇
  2003年   63篇
  2002年   53篇
  2001年   21篇
  2000年   20篇
  1999年   30篇
  1998年   13篇
  1997年   8篇
  1996年   5篇
  1995年   7篇
  1994年   12篇
  1993年   8篇
  1992年   18篇
  1991年   8篇
  1990年   8篇
  1989年   15篇
  1988年   18篇
  1987年   6篇
  1986年   6篇
  1985年   17篇
  1984年   15篇
  1983年   12篇
  1982年   14篇
  1981年   7篇
  1979年   14篇
  1978年   8篇
  1976年   5篇
  1975年   5篇
  1974年   9篇
  1973年   5篇
  1971年   6篇
  1969年   5篇
排序方式: 共有1643条查询结果,搜索用时 15 毫秒
71.
BackgroundMosquito-borne Zika virus (ZIKV) typically causes a mild and self-limiting illness known as Zika fever, which often is accompanied by maculopapular rash, headache, and myalgia. During the current outbreak in South America, ZIKV infection during pregnancy has been hypothesized to cause microcephaly and other diseases. The detection of ZIKV in fetal brain tissue supports this hypothesis. Because human infections with ZIKV historically have remained sporadic and, until recently, have been limited to small-scale epidemics, neither the disease caused by ZIKV nor the molecular determinants of virulence and/or pathogenicity have been well characterized. Here, we describe a small animal model for wild-type ZIKV of the Asian lineage.Conclusions/SignificanceFoot pad injection of AG129 mice with ZIKV represents a biologically relevant model for studying ZIKV infection and disease development following wild-type virus inoculation without the requirement for adaptation of the virus or intracerebral delivery of the virus. This newly developed Zika disease model can be exploited to identify determinants of ZIKV virulence and reveal molecular mechanisms that control the virus-host interaction, providing a framework for rational design of acute phase therapeutics and for vaccine efficacy testing.  相似文献   
72.
The objective of this study was to evaluate the prognostic value of static and dynamic variables of central venous oxygen saturation (ScvO2) and lactate in patients with severe sepsis or septic shock who underwent early quantitative resuscitation. We also investigated whether ScvO2 measured after initial resuscitation could provide additive prognostic value to that of lactate. We analyzed the sepsis registry for patients presenting to the emergency department and included patients with simultaneous measurements of lactate and ScvO2 at the time of presentation (H0) and 6 hours (H6) after resuscitation. The primary outcome was 28-day mortality and multivariable logistic analysis was used to adjust for confounders. A total of 363 patients were included, and the overall 28-day mortality was 18%. The area under the receiver operator characteristic curve for predicting 28-day mortality was as follows: lactate (H6), 0.81; lactate (H0), 0.73; relative lactate change, 0.67; ScvO2 (H6), 0.65; relative ScvO2 change 0.59; ScvO2 (H0), 0.58. Patients with lactate normalization showed significantly lower 28-day mortality compared to patients without lactate normalization (3% vs. 28%, P<0.01). However, in those who achieved ScvO2 (H6) ≥70%, there was a significant difference in 28-mortality only in patients without lactate normalization (21% vs. 39%, P<0.01) but no difference in those with lactate normalization (4% vs. 3%, P = 0.71). In multivariable analysis, lactate normalization was significantly associated with 28-day mortality (adjusted odds ratio [OR] for 28-day mortality, 0.20; 95% confidence interval [CI], 0.07–0.54; P <0.01), but ScvO2 (H6) ≥70% showed only a marginal association (the adjusted OR for 28-day mortality, 0.51; 95% CI, 0.26–1.01; P = 0.05). ScvO2 (H6) ≥70% was associated with 28-day mortality only in cases without lactate normalization in subgroup analysis (adjusted OR 0.37, 95% CI, 0.18–0.79; P = 0.01). Six-hour lactate was the strongest predictor of 28-day mortality in patients with severe sepsis or septic shock. Six-hour ScvO2 provided additional prognostic value only in cases where lactate values were not normalized after resuscitation.  相似文献   
73.
74.
75.
76.
This letter describes progress towards an M4 PAM preclinical candidate inspired by an unexpected aldehyde oxidase (AO) metabolite of a novel, CNS penetrant thieno[2,3-c]pyridine core to an equipotent, non-CNS penetrant thieno[2,3-c]pyrdin-7(6H)-one core. Medicinal chemistry design efforts yielded two novel tricyclic cores that enhanced M4 PAM potency, regained CNS penetration, displayed favorable DMPK properties and afforded robust in vivo efficacy in reversing amphetamine-induced hyperlocomotion in rats.  相似文献   
77.
The hybrid sensor SagS plays a central role in the formation of Pseudomonas aeruginosa biofilms, by enabling the switch from the planktonic to the biofilm mode of growth and by facilitating the transition of biofilm cells to a highly tolerant state. In this study, we examined the importance of the SagS key amino acid residues associated with biofilm formation (L154) and antibiotic tolerance (D105) in P. aeruginosa virulence. Recombinant P. aeruginosa ΔsagS and ΔsagS chromosomally expressing wild‐type sagS, or its two variants D105A and L154A, were tested for their potential to form biofilms and cause virulence in plants and mouse models of acute and chronic pneumonia. Although mutation of sagS did not alter P. aeruginosa virulence during acute infections, a significant difference in pathogenicity of sagS mutants was observed during chronic infections, with the L154A variant showing reduced bacterial loads in the chronic pneumonia model, while interference with the D105 residue enhanced the susceptibility of P. aeruginosa biofilms during tobramycin treatment. Our findings suggest that interference with the biofilm or tolerance regulatory circuits of SagS affects P. aeruginosa pathogenicity in chronic but not acute infections, and reveal SagS to be a promising new target to treat P. aeruginosa biofilm infections.  相似文献   
78.
With the increasing frequency of large‐scale restoration efforts, the need to understand the adaptive genetic structure of natural plant populations and their relation to heavily utilized cultivars is critical. Bouteloua gracilis (blue grama) is a wind‐dispersed, perennial grass consisting of several cytotypes (2n = 2×–6×) with a widespread distribution in western North America. The species is locally dominant and used regularly in restoration treatments. Using amplified fragment length polymorphism (AFLP) and cpDNA analyses, we assessed the genetic variability and adaptive genetic structure of blue grama within and among 44 sampling sites that are representative of the species’ environmental and habitat diversity in the southwestern United States. Five cultivars were also included to investigate genetic diversity and differentiation in natural versus cultivated populations. Three main findings resulted from this study: (a) Ninety‐four polymorphic AFLP markers distinguished two population clusters defined largely by samples on and off the Colorado Plateau; (b) substructure of samples on the Colorado Plateau was indicated by genetic divergence between boundary and interior regions, and was supported by cytotype distribution and cpDNA analysis; and (c) six AFLP markers were identified as “outliers,” consistent with being under selection. These loci were significantly correlated to mean annual temperature, mean annual precipitation, precipitation of driest quarter, and precipitation of wettest quarter in natural populations, but not in cultivated samples. Marker × environment relationships were found to be largely influenced by cytotype and cultivar development. Our results demonstrate that blue grama is genetically variable, and exhibits genetic structure, which is shaped, in part, by environmental variability across the Colorado Plateau. Information from our study can be used to guide the selection of seed source populations for commercial development and long‐term conservation management of B. gracilis, which could include genetic assessments of diversity and the adaptive potential of both natural and cultivated populations for wildland restoration.  相似文献   
79.
Evolutionary constraint results from the interaction between the distribution of available genetic variation and the position of selective optima. The availability of genetic variance in multitrait systems, as described by the additive genetic variance-covariance matrix (G), has been the subject of recent attempts to assess the prevalence of genetic constraints. However, evolutionary constraints have not yet been considered from the perspective of the phenotypes available to multivariate selection, and whether genetic variance is present in all phenotypes potentially under selection. Determining the rank of the phenotypic variance-covariance matrix (P) to characterize the phenotypes available to selection, and contrasting it with the rank of G, may provide a general approach to determining the prevalence of genetic constraints. In a study of a laboratory population of Drosophila bunnanda from northern Australia we applied factor-analytic modeling to repeated measures of individual wing phenotypes to determine the dimensionality of the phenotypic space described by P. The phenotypic space spanned by the 10 wing traits had 10 statistically supported dimensions. In contrast, factor-analytic modeling of G estimated for the same 10 traits from a paternal half-sibling breeding design suggested G had fewer dimensions than traits. Statistical support was found for only five and two genetic dimensions, describing a total of 99% and 72% of genetic variance in wing morphology in females and males, respectively. The observed mismatch in dimensionality between P and G suggests that although selection might act to shift the intragenerational population mean toward any trait combination, evolution may be restricted to fewer dimensions.  相似文献   
80.
A promising route for understanding the origin and diversification of organismal form is through studies at the intersection of evolution and development (evo-devo). While much has been learned over the last two decades concerning macroevolutionary patterns of developmental change, a fundamental gap in the evo-devo synthesis is the integration of mathematical population and quantitative genetics with studies of how genetic variation in natural populations affects developmental processes. This micro-evo-devo synthesis requires model organisms with which to ask empirical questions. Threespine stickleback fish (Gasterosteus aculeatus), long a model for studying behavior, ecology and evolution, is emerging as a prominent model micro-evo-devo system. Research on stickleback over the last decade has begun to address the genetic basis of morphological variation and sex determination, and much of this work has important implications for understanding the genetics of speciation. In this paper we review recent threespine stickleback micro-evo-devo results, and outline the resources that have been developed to make this synthesis possible. The prospects for stickleback research to speed the micro-(and macro-) evo-devo syntheses are great, and this workhorse model system is well situated to continue contributing to our understanding of the generation of diversity in organismal form for many more decades.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号