首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   273篇
  免费   31篇
  2022年   3篇
  2021年   4篇
  2019年   3篇
  2017年   5篇
  2016年   7篇
  2015年   8篇
  2014年   8篇
  2013年   15篇
  2012年   12篇
  2011年   15篇
  2010年   7篇
  2009年   10篇
  2008年   5篇
  2007年   6篇
  2006年   6篇
  2005年   10篇
  2004年   14篇
  2003年   4篇
  2002年   6篇
  2001年   2篇
  1997年   4篇
  1996年   2篇
  1993年   2篇
  1992年   10篇
  1991年   6篇
  1990年   9篇
  1989年   10篇
  1988年   10篇
  1987年   3篇
  1986年   2篇
  1985年   3篇
  1984年   5篇
  1983年   6篇
  1982年   6篇
  1981年   3篇
  1980年   2篇
  1978年   2篇
  1977年   3篇
  1976年   4篇
  1975年   3篇
  1974年   2篇
  1973年   4篇
  1972年   3篇
  1971年   16篇
  1970年   7篇
  1969年   2篇
  1967年   9篇
  1966年   2篇
  1965年   3篇
  1964年   2篇
排序方式: 共有304条查询结果,搜索用时 15 毫秒
101.
Rhodopsin, the pigment protein responsible for dim-light vision, is a G protein-coupled receptor that converts light absorption into the activation of a G protein, transducin, to initiate the visual response. We have crystallised detergent-solubilised bovine rhodopsin in the native form and after chemical modifications as needles 10-40 microm in cross-section. The crystals belong to the trigonal space group P3(1), with two molecules of rhodopsin per asymmetric unit, related by a non-crystallographic 2-fold axis parallel with the crystallographic screw axis along c (needle axis). The unit cell dimensions are a=103.8 A, c=76.6 A for native rhodopsin, but vary over a wide range after heavy atom derivatisation, with a between 101.5 A and 113.9 A, and c between 76.6 A and 79.2 A. Rhodopsin molecules are packed with the bundle of transmembrane helices tilted from the c-axis by about 100 degrees . The two molecules in the asymmetric unit form contacts along the entire length of their transmembrane helices 5 in an antiparallel orientation, and they are stacked along the needle axis according to the 3-fold screw symmetry. Hence hydrophobic contacts are prominent at protein interfaces both along and normal to the needle axis. The best crystals of native rhodopsin in this crystal form diffracted X-rays from a microfocused synchrotron source to 2.55 A maximum resolution. We describe steps taken to extend the diffraction limit from about 10 A to 2.6 A.  相似文献   
102.
The photosynthetic reaction center of Rhodobacter sphaeroides 2.4.1 contains one carotenoid that protects the protein complex against photodestruction. The structure around the central (15,15') double bond of the bound spheroidene carotenoid was investigated with low-temperature magic angle spinning 13C NMR, which allows an in situ characterization of the configuration of the central double bond in the carotenoid. Carotenoidless reaction centers of R. sphaeroides R26 were reconstituted with spheroidene specifically labeled at the C-14' or C-15' position, and the signals from the labels were separated from the natural abundance background using 13C MAS NMR difference spectroscopy. The resonances shift 5.2 and 3.8 ppm upfield upon incorporation in the protein complex, similar to the 5.6 and 4.4 ppm upfield shift occurring in the model compound beta-carotene upon trans to 15,15'-cis isomerization. Hence the MAS NMR favors a cis configuration, as opposed to the trans configuration deduced from X-ray data.  相似文献   
103.
Analysis of complementary DNA for porcine alpha 1-microglobulin and bikunin indicates that both proteins result from proteolytic processing of a common precursor similar to that found in man. Complete primary structures of these proteins are deduced from the nucleic acid sequence and partially confirmed by peptide sequencing.  相似文献   
104.
The cereal pathogen Fusarium graminearum threatens food and feed production worldwide. It reduces the yield and poisons the remaining kernels with mycotoxins, notably deoxynivalenol (DON). We analyzed the importance of gamma‐aminobutanoic acid (GABA) metabolism for the life cycle of this fungal pathogen. GABA metabolism in F. graminearum is partially regulated by the global nitrogen regulator AreA. Genetic disruption of the GABA shunt by deletion of two GABA transaminases renders the pathogen unable to utilize the plant stress metabolites GABA and putrescine. The mutants showed increased sensitivity against oxidative stress, GABA accumulation in the mycelium, downregulation of two key enzymes of the TCA cycle, disturbed potential gradient in the mitochondrial membrane and lower mitochondrial oxygen consumption. In contrast, addition of GABA to the wild type resulted in its rapid turnover and increased mitochondrial steady state oxygen consumption. GABA concentrations are highly upregulated in infected wheat tissues. We conclude that GABA is metabolized by the pathogen during infection increasing its energy production, whereas the mutants accumulate GABA intracellularly resulting in decreased energy production. Consequently, the GABA mutants are strongly reduced in virulence but, because of their DON production, are able to cross the rachis node.  相似文献   
105.
In bacteria, stalled ribosomes are recycled by a hybrid transfer-messenger RNA (tmRNA). Like tRNA, tmRNA is aminoacylated with alanine and is delivered to the ribosome by EF-Tu, where it reacts with the growing polypeptide chain. tmRNA entry into stalled ribosomes poses a challenge to our understanding of ribosome function because it occurs in the absence of a codon-anticodon interaction. Instead, tmRNA entry is licensed by the binding of its protein partner, SmpB, to the ribosomal decoding center. We analyzed a series of SmpB mutants and found that its C-terminal tail is essential for tmRNA accommodation but not for EF-Tu activation. We obtained evidence that the tail likely functions as a helix on the ribosome to promote accommodation and identified key residues in the tail essential for this step. In addition, our mutational analysis points to a role for the conserved K(131)GKK tail residues in trans-translation after peptidyl transfer to tmRNA, presumably EF-G-mediated translocation or translation of the tmRNA template. Surprisingly, analysis of A1492, A1493, and G530 mutants reveals that while these ribosomal nucleotides are essential for normal tRNA selection, they play little to no role in peptidyl transfer to tmRNA. These studies clarify how SmpB interacts with the ribosomal decoding center to license tmRNA entry into stalled ribosomes.  相似文献   
106.
Non-inferiority trials test whether a new product is not unacceptably worse than a product already in use. This paper introduces concepts related to non-inferiority, and discusses the regulatory views of both the European Medicines Agency and the United States Food and Drug Administration.  相似文献   
107.
The interaction of rhodopsin and transducin has been the focus of study for more than 30 years, but only recently have efforts to purify an activated complex in detergent solution materialized. These efforts have used native rhodopsin isolated from bovine retina and employed either sucrose density gradient centrifugation or size exclusion chromatography to purify the complex. While there is general agreement on most properties of the activated complex, subunit stoichiometry is not yet settled, with rhodopsin/transducin molar ratios of both 2/1 and 1/1 reported. In this report, we introduce methods for preparation of the complex that include use of recombinant rhodopsin, so as to take advantage of mutations that confer constitutive activity and enhanced thermal stability on the protein, and immunoaffinity chromatography for purification of the complex. We show that chromatography on ConA-Sepharose can substitute for the immunoaffinity column and that bicelles can be used instead of detergent solution. We demonstrate the following: that rhodopsin has a covalently bound all-trans-retinal chromophore and therefore corresponds to the active metarhodopin II state; that transducin has an empty nucleotide-binding pocket; that the isolated complex is active and dissociates upon addition of guanine nucleotide; and finally that the stoichiometry corresponds reproducibly to a 1/1 molar ratio of rhodopsin to transducin.  相似文献   
108.
109.
Antagonism of CXCR4 disrupts the interaction between the CXCR4 receptor on hematopoietic stem cells (HSCs) and the CXCL12 expressed by stromal cells in the bone marrow, which subsequently results in the shedding of HSCs to the periphery. Because of their profound immunomodulatory effects, HSCs have emerged as a promising therapeutic strategy for autoimmune disorders. We sought to investigate the immunomodulatory role of mobilized autologous HSCs, via target of the CXCR4-CXL12 axis, to promote engraftment of islet cell transplantation. Islets from BALB/c mice were transplanted beneath the kidney capsule of hyperglycemic C57BL/6 mice, and treatment of recipients with CXCR4 antagonist resulted in mobilization of HSCs and in prolongation of islet graft survival. Addition of rapamycin to anti-CXCR4 therapy further promoted HSC mobilization and islet allograft survival, inducing a robust and transferable host hyporesponsiveness, while administration of an ACK2 (anti-CD117) mAb halted CXCR4 antagonist-mediated HSC release and restored allograft rejection. Mobilized HSCs were shown to express high levels of the negative costimulatory molecule programmed death ligand 1 (PD-L1), and HSCs extracted from wild-type mice, but not from PD-L1 knockout mice, suppressed the in vitro alloimmune response. Moreover, HSC mobilization in PD-L1 knockout mice failed to prolong islet allograft survival. Targeting the CXCR4-CXCL12 axis thus mobilizes autologous HSCs and promotes long-term survival of islet allografts via a PD-L1-mediated mechanism.  相似文献   
110.
Crystal structure of a thermally stable rhodopsin mutant   总被引:5,自引:0,他引:5  
We determined the structure of the rhodopsin mutant N2C/D282C expressed in mammalian cells; the first structure of a recombinantly produced G protein-coupled receptor (GPCR). The mutant was designed to form a disulfide bond between the N terminus and loop E3, which allows handling of opsin in detergent solution and increases thermal stability of rhodopsin by 10 deg.C. It allowed us to crystallize a fully deglycosylated rhodopsin (N2C/N15D/D282C). N15 mutations are normally misfolding and cause retinitis pigmentosa in humans. Microcrystallographic techniques and a 5 microm X-ray beam were used to collect data along a single needle measuring 5 microm x 5 microm x 90 microm. The disulfide introduces only minor changes but fixes the N-terminal cap over the beta-sheet lid covering the ligand-binding site, a likely explanation for the increased stability. This work allows structural investigation of rhodopsin mutants and shows the problems encountered during structure determination of GPCRs and other mammalian membrane proteins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号