首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   182篇
  免费   22篇
  2022年   1篇
  2016年   3篇
  2015年   7篇
  2014年   2篇
  2013年   8篇
  2012年   9篇
  2011年   3篇
  2010年   4篇
  2009年   10篇
  2008年   14篇
  2007年   9篇
  2006年   8篇
  2005年   11篇
  2004年   5篇
  2003年   9篇
  2002年   11篇
  2001年   8篇
  2000年   7篇
  1999年   5篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1992年   5篇
  1991年   3篇
  1990年   1篇
  1989年   2篇
  1988年   3篇
  1987年   4篇
  1986年   3篇
  1985年   3篇
  1984年   4篇
  1983年   4篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   4篇
  1978年   5篇
  1977年   4篇
  1976年   4篇
  1975年   2篇
  1974年   3篇
  1973年   2篇
  1972年   1篇
  1971年   3篇
排序方式: 共有204条查询结果,搜索用时 15 毫秒
21.
A key issue in the nucleotide excision repair (NER) of bulky carcinogen–DNA adducts is the ability of the NER machinery to recognize and repair certain adducts while failing to repair others. Unrepaired adducts can survive to cause mutations that initiate the carcinogenic process. Benzo[c]phenanthrene (B[c]Ph), a representative fjord region polycyclic aromatic hydrocarbon, can be metabolically activated to the enantiomeric benzo[c]phenanthrene diol epoxides (B[c]PhDEs), (+)-(1S,2R,3R,4S)-3,4- dihydroxy-1,2-epoxy-1,2,3,4-tetrahydrobenzo[c]phe nanthrene and the corresponding (–)-(1R,2S,3S,4R) isomer. These react predominantly with adenine residues in DNA to produce the stereoisomeric 1R (+)- and 1S (–)-trans-anti-B[c]Ph-N6-dA adducts. Duplexes containing the 1R (+) or 1S (–) B[c]Ph-dA adduct in codon 61 of the human N-ras mutational hotspot sequence CA*A, with B[c]Ph modification at A*, are not repaired by the human NER system. However, the analogous stereoisomeric DNA adducts of the bay region benzo[a]pyrene diol epoxide (B[a]PDE), 10S (+)- and 10R (–)-trans-anti-B[a]P-N6-dA, are repaired in the same base sequence. In order to elucidate structural and thermodynamic origins of this phenomenon, we have carried out a 2 ns molecular dynamics simulation for the 1R (+)- and 1S (–)-trans-anti-B[c]Ph-N6-dA adducts in an 11mer duplex containing the human N-ras codon 61 sequence, and compared these results with our previous study of the B[a]P-dA adducts in the same sequence. The molecular mechanics Poisson– Boltzmann surface area (MM-PBSA) method was applied to calculate the free energies of the pair of stereoisomeric B[c]Ph-dA adducts, and a detailed structural analysis was carried out. The different repair susceptibilities of the B[a]P-dA adducts and the B[c]Ph-dA adducts can be attributed to different degrees of distortion, stemming from combined effects of differences in the quality of Watson–Crick hydrogen bonding, unwinding, stretching and helix backbone perturbations. These differences are due to the different intrinsic topologies of the rigid, planar bay region adducts versus the twisted, sterically hindered fjord region adducts.  相似文献   
22.
The function of the human nucleotide excision repair (NER) apparatus is to remove bulky adducts from damaged DNA. In an effort to gain insights into the molecular mechanisms involved in the recognition and excision of bulky lesions, we investigated a series of site specifically modified oligonucleotides containing single, well-defined polycyclic aromatic hydrocarbon (PAH) diol epoxide-adenine adducts. Covalent adducts derived from the bay region PAH, benzo[a]pyrene, are removed by human NER enzymes in vitro. In contrast, the stereochemically analogous N(6)-dA adducts derived from the topologically different fjord region PAH, benzo[c]phenanthrene, are resistant to repair. The evasion of DNA repair may play a role in the observed higher tumorigenicity of the fjord region PAH diol epoxides. We are elucidating the structural and thermodynamic features of these adducts that may underlie their marked distinction in biologic function, employing high-resolution nuclear magnetic resonance studies, measurements of thermal stabilities of the PAH diol epoxide-modified oligonucleotide duplexes, and molecular dynamics simulations with free energy calculations. Our combined findings suggest that differences in the thermodynamic properties and thermal stabilities are associated with differences in distortions to the DNA induced by the lesions. These structural effects correlate with the differential NER susceptibilities and stem from the intrinsically distinct shapes of the fjord and bay region PAH diol epoxide-N(6)-adenine adducts.  相似文献   
23.
DNA polymerase mu (Polmu) is a newly discovered member of the polymerase X family with unknown cellular function. The understanding of Polmu function should be facilitated by an understanding of its biochemical activities. By using purified human Polmu for biochemical analyses, we discovered the lesion bypass activities of this polymerase in response to several types of DNA damage. When it encountered a template 8-oxoguanine, abasic site, or 1,N(6)-ethenoadenine, purified human Polmu efficiently bypassed the lesion. Even bulky DNA adducts such as N-2-acetylaminofluorene-adducted guanine, (+)- and (-)-trans-anti-benzo[a]pyrene-N(2)-dG were unable to block the polymerase activity of human Polmu. Bypass of these simple base damage and bulky adducts was predominantly achieved by human Polmu through a deletion mechanism. The Polmu specificity of nucleotide incorporation indicates that the deletion resulted from primer realignment before translesion synthesis. Purified human Polmu also effectively bypassed a template cis-syn TT dimer. However, this bypass was achieved in a mainly error-free manner with AA incorporation opposite the TT dimer. These results provide new insights into the biochemistry of human Polmu and show that efficient translesion synthesis activity is not strictly confined to the Y family polymerases.  相似文献   
24.
The UvrABC nuclease system from Escherichia coli removes DNA damages induced by a wide range of chemical carcinogens with variable efficiencies. The interactions with UvrABC proteins of the following three lesions site-specifically positioned in DNA, and of known conformations, were investigated: (i) adducts derived from the binding of the (-)-(7S,8R,9R,10S) enantiomer of 7,8-dihydroxy-9, 10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene [(-)-anti-BPDE] by cis-covalent addition to N(2)-2'-deoxyguanosine [(-)-cis-anti-BP-N(2)-dG], (ii) an adduct derived from the binding of the (+)-(1R,2S,3S,4R) enantiomer of 1,2-dihydroxy-3,4-epoxy-1,2,3, 4-tetrahydro-5-methylchrysene [(+)-anti-5-MeCDE] by trans addition to N(2)-2'-deoxyguanosine [(+)-trans-anti-MC-N(2)-dG], and (iii) a C8-2'-deoxyguanosine adduct (C8-AP-dG) formed by reductively activated 1-nitropyrene (1-NP). The influence of these three different adducts on UvrA binding affinities, formation of UvrB-DNA complexes by quantitative gel mobility shift analyses, and the rates of UvrABC incision were investigated. The binding affinities of UvrA varied among the three adducts. UvrA bound to the DNA adduct (+)-trans-anti-MC-N(2)-dG with the highest affinity (K(d) = 17 +/- 2 nM) and to the DNA containing C8-AP-dG with the least affinity (K(d) = 28 +/- 1 nM). The extent of complex formation with UvrB was also the lowest with the C8-AP-dG adduct. 5' Incisions occurred at the eighth phosphate from the modified guanine. The major 3' incision site corresponded to the fifth phosphodiester bond for all three adducts. However, additional 3' incisions were observed at the fourth and sixth phosphates in the case of the C8-AP-dG adduct, whereas in the case of the (-)-cis-anti-BP-N(2)-dG and (+)-trans-anti-MC-N(2)-dG lesions additional 3' cleavage occurred at the sixth and seventh phosphodiester bonds. Both the initial rate and the extent of 5' and 3' incisions revealed that C8-AP-dG was repaired less efficiently in comparison to the (-)-cis-anti-BP-N(2)-dG and (+)-trans-anti-MC-N(2)-dG containing DNA adducts. Our study showed that UvrA recognizes conformational changes induced by structurally different lesions and that in certain cases the binding affinities of UvrA and UvrB can be correlated with the incision rates. The size of the bubble formed around the damaged site with mismatched bases also appears to influence the incision rates. A particularly noteworthy finding in this study is that UvrABC repair of a substrate with no base opposite C8-AP-dG was quite inefficient as compared to the same adduct with a C opposite it. These findings are discussed in terms of the available NMR solution structures.  相似文献   
25.
Cai Y  Wang L  Ding S  Schwaid A  Geacintov NE  Broyde S 《Biochemistry》2010,49(46):9943-9945
The impact of a bulky DNA lesion on the structure and dynamics of a nucleosome core particle (NCP) containing a lesion derived from the unusually potent tumorigen dibenzo[a,l]pyrene that resists nucleotide excision repair (NER) in free DNA was investigated using 65 ns molecular dynamics simulations. Our results reveal that, relative to unmodified NCP, the lesion stabilizes the nucleosome via stacking interactions, improved Watson-Crick base pairing, hydrogen bonding between DNA and histones, and damped dynamics. These findings suggest that such lesions should be as resistant to NER in the nucleosome environment as they are in free DNA.  相似文献   
26.
Benzo[a]pyrene (B[a]P), a known environmental pollutant and tobacco smoke carcinogen, is metabolically activated to highly tumorigenic B[a]P diol epoxide derivatives that predominantly form N(2)-guanine adducts in cellular DNA. Although nucleotide excision repair (NER) is an important cellular defense mechanism, the molecular basis of recognition of these bulky lesions is poorly understood. In order to investigate the effects of DNA adduct structure on NER, three stereoisomeric and conformationally different B[a]P-N(2)-dG lesions were site specifically incorporated into identical 135-mer duplexes and their response to purified NER factors was investigated. Using a permanganate footprinting assay, the NER lesion recognition factor XPC/HR23B exhibits, in each case, remarkably different patterns of helix opening that is also markedly distinct in the case of an intra-strand crosslinked cisplatin adduct. The different extents of helix distortions, as well as differences in the overall binding of XPC/HR23B to double-stranded DNA containing either of the three stereoisomeric B[a]P-N(2)-dG lesions, are correlated with dual incisions catalyzed by a reconstituted incision system of six purified NER factors, and by the full NER apparatus in cell-free nuclear extracts.  相似文献   
27.
The environmental carcinogen benzo[a]pyrene (BP) is metabolized to reactive diol epoxides that bind to cellular DNA by predominantly forming N2-guanine adducts (G*). Mutation hotspots for these adducts are frequently found in 5′-···GG··· dinucleotide sequences, but their origins are poorly understood. Here we used high resolution NMR and molecular dynamics simulations to investigate differences in G* adduct conformations in 5′-···CG*GC··· and 5′-···CGG*C··· sequence contexts in otherwise identical 12-mer duplexes. The BP rings are positioned 5′ along the modified strand in the minor groove in both cases. However, subtle orientational differences cause strong distinctions in structural distortions of the DNA duplexes, because the exocyclic amino groups of flanking guanines on both strands compete for space with the BP rings in the minor groove, acting as guideposts for placement of the BP. In the 5′-···CGG*C··· case, the 5′-flanking G · C base pair is severely untwisted, concomitant with a bend deduced from electrophoretic mobility. In the 5′-···CG*GC··· context, there is no untwisting, but there is significant destabilization of the 5′-flanking Watson–Crick base pair. The minor groove width opens near the lesion in both cases, but more for 5′-···CGG*C···. Differential sequence-dependent removal rates of this lesion result and may contribute to the mutation hotspot phenomenon.  相似文献   
28.
Base excision repair (BER) is the major pathway employed to excise oxidized DNA lesions. Human Neil1, a versatile glycosylase in the BER pathway, repairs a diverse array of oxidative lesions; however, the most prevalent, 8-oxo-7,8-dihydroguanine (8-oxoG), is only weakly excised. The structural origin of hNeil1's ability to repair a variety of lesions but not 8-oxoG is a model system for connecting enzyme structure and lesion-recognition specificity. To elucidate structural properties determining hNeil1's substrate specificities, we have investigated it in complex with two pairs of representative well-repaired substrates: the R- and S-spiroiminodihydantoin (Sp) stereoisomers, nonplanar further oxidation products of guanine, and the 5R,6S- and 5S,6R-thymine glycol (Tg) stereoisomers, the most prevalent oxidative lesions of thymine. We also investigate the poorly repaired 8-oxoG. We employed molecular modeling and 10 ns molecular dynamics (MD) simulations. The results of our investigations provide structural explanations for the ability of hNeil1 to excise a variety of oxidative lesions: they possess common chemical features, namely, a pyrimidine-like ring and shared hydrogen bond donor-acceptor properties, which allow the lesions to fit well in the binding pocket, which is somewhat flexible. However, the planar 8-oxoG is not as well accommodated in the shallow and comparatively cramped recognition pocket; it has fewer hydrogen bonding interactions with the enzyme and a solvent exposed six-membered ring, consistent with its poor repair susceptibility by this enzyme.  相似文献   
29.
DNA-damage tolerance (DDT) via translesion DNA synthesis (TLS) or homology-dependent repair (HDR) functions to bypass DNA lesions encountered during replication, and is critical for maintaining genome stability. Here, we present piggyBlock, a new chromosomal assay that, using piggyBac transposition of DNA containing a known lesion, measures the division of labor between the two DDT pathways. We show that in the absence of DNA damage response, tolerance of the most common sunlight-induced DNA lesion, TT-CPD, is achieved by TLS in mouse embryo fibroblasts. Meanwhile, BP-G, a major smoke-induced DNA lesion, is bypassed primarily by HDR, providing the first evidence for this mechanism being the main tolerance pathway for a biologically important lesion in a mammalian genome. We also show that, far from being a last-resort strategy as it is sometimes portrayed, TLS operates alongside nucleotide excision repair, handling 40% of TT-CPDs in repair-proficient cells. Finally, DDT acts in mouse embryonic stem cells, exhibiting the same pattern—mutagenic TLS included—despite the risk of propagating mutations along all cell lineages. The new method highlights the importance of HDR, and provides an effective tool for studying DDT in mammalian cells.  相似文献   
30.
Translesion DNA synthesis (TLS) is a DNA damage tolerance mechanism in which specialized low-fidelity DNA polymerases bypass replication-blocking lesions, and it is usually associated with mutagenesis. In Saccharomyces cerevisiae a key event in TLS is the monoubiquitination of PCNA, which enables recruitment of the specialized polymerases to the damaged site through their ubiquitin-binding domain. In mammals, however, there is a debate on the requirement for ubiquitinated PCNA (PCNA-Ub) in TLS. We show that UV-induced Rpa foci, indicative of single-stranded DNA (ssDNA) regions caused by UV, accumulate faster and disappear more slowly in Pcna(K164R/K164R) cells, which are resistant to PCNA ubiquitination, compared to Pcna(+/+) cells, consistent with a TLS defect. Direct analysis of TLS in these cells, using gapped plasmids with site-specific lesions, showed that TLS is strongly reduced across UV lesions and the cisplatin-induced intrastrand GG crosslink. A similar effect was obtained in cells lacking Rad18, the E3 ubiquitin ligase which monoubiquitinates PCNA. Consistently, cells lacking Usp1, the enzyme that de-ubiquitinates PCNA exhibited increased TLS across a UV lesion and the cisplatin adduct. In contrast, cells lacking the Rad5-homologs Shprh and Hltf, which polyubiquitinate PCNA, exhibited normal TLS. Knocking down the expression of the TLS genes Rev3L, PolH, or Rev1 in Pcna(K164R/K164R) mouse embryo fibroblasts caused each an increased sensitivity to UV radiation, indicating the existence of TLS pathways that are independent of PCNA-Ub. Taken together these results indicate that PCNA-Ub is required for maximal TLS. However, TLS polymerases can be recruited to damaged DNA also in the absence of PCNA-Ub, and perform TLS, albeit at a significantly lower efficiency and altered mutagenic specificity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号