首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10004篇
  免费   792篇
  国内免费   779篇
  11575篇
  2024年   22篇
  2023年   131篇
  2022年   305篇
  2021年   494篇
  2020年   354篇
  2019年   462篇
  2018年   408篇
  2017年   332篇
  2016年   452篇
  2015年   641篇
  2014年   767篇
  2013年   778篇
  2012年   888篇
  2011年   855篇
  2010年   491篇
  2009年   410篇
  2008年   486篇
  2007年   436篇
  2006年   359篇
  2005年   284篇
  2004年   262篇
  2003年   229篇
  2002年   198篇
  2001年   175篇
  2000年   133篇
  1999年   147篇
  1998年   104篇
  1997年   106篇
  1996年   82篇
  1995年   79篇
  1994年   91篇
  1993年   70篇
  1992年   94篇
  1991年   70篇
  1990年   50篇
  1989年   41篇
  1988年   39篇
  1987年   30篇
  1986年   21篇
  1985年   41篇
  1984年   12篇
  1983年   13篇
  1982年   10篇
  1980年   9篇
  1979年   19篇
  1978年   8篇
  1976年   11篇
  1975年   8篇
  1972年   11篇
  1971年   9篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
81.
82.
83.
Atmospheric nitrogen (N) deposition is an important component that affects the structure and function of different terrestrial ecosystem worldwide. However, much uncertainty still remains concerning the magnitude of N deposition on grassland ecosystem in China. To study the spatial and temporal patterns of bulk N deposition, the levels of N (NH4 +-N and NO3 --N) concentration in rainfall were measured at 12 sites across a 1200 km grassland transect in Inner Mongolia, China, and the respective N deposition rates were estimated. The inorganic N deposition rates ranged from 4.53 kg N ha-1 to 12.21 kg N ha-1 with a mean value of 8.07 kg N ha-1 during the entire growing season, decreasing steadily from the eastern to the western regions. Inorganic N deposition occurred mainly in July and August across meadow steppe, typical steppe, and desert steppe, which corresponded to the seasonal distribution of mean annual precipitation. A positive relationship was found between inorganic N deposition and mean annual precipitation (R2 = 0.54 ~ 0.72, P < 0.0001) across the grassland transect. Annual estimation of inorganic N deposition was 0.67 Pg yr-1 in Inner Mongolia, China based on the correlation between N deposition rates and precipitation. N deposition was an important factor controlling aboveground biomass and ecosystem respiration, but has no effect on root biomass and soil respiration. We must clarify that we used the bulk deposition samplers during the entire sampling process and estimated the dissolved NH4 +-N and NO3 --N deposition rates during the entire growing season. Long-term N deposition monitoring networks should be constructed to study the patterns of N deposition and its potential effect on grassland ecosystem, considering various N species, i.e., gaseous N, particle N, and wet N deposition.  相似文献   
84.
Many proteins are composed of several domains that pack together into a complex tertiary structure. Multidomain proteins can be challenging for protein structure modeling, particularly those for which templates can be found for individual domains but not for the entire sequence. In such cases, homology modeling can generate high quality models of the domains but not for the orientations between domains. Small-angle X-ray scattering (SAXS) reports the structural properties of entire proteins and has the potential for guiding homology modeling of multidomain proteins. In this article, we describe a novel multidomain protein assembly modeling method, SAXSDom that integrates experimental knowledge from SAXS with probabilistic Input-Output Hidden Markov model to assemble the structures of individual domains together. Four SAXS-based scoring functions were developed and tested, and the method was evaluated on multidomain proteins from two public datasets. Incorporation of SAXS information improved the accuracy of domain assembly for 40 out of 46 critical assessment of protein structure prediction multidomain protein targets and 45 out of 73 multidomain protein targets from the ab initio domain assembly dataset. The results demonstrate that SAXS data can provide useful information to improve the accuracy of domain-domain assembly. The source code and tool packages are available at https://github.com/jianlin-cheng/SAXSDom .  相似文献   
85.
N 6‐methyladenosine (m6A) is a chemical modification present in multiple RNA species and is most abundant in mRNAs. Studies on m6A reveal its comprehensive roles in almost every aspect of mRNA metabolism, as well as in a variety of physiological processes. Although some recent discoveries indicate that m6A can affect the life cycles of numerous viruses as well as the cellular antiviral immune response, the roles of m6A modification in type I interferon (IFN‐I) signaling are still largely unknown. Here, we reveal that WT1‐associated protein (WTAP), one of the m6A “writers”, is degraded via the ubiquitination‐proteasome pathway upon activation of IFN‐I signaling. With the degradation of WTAP, the m6A levels of IFN‐regulatory factor 3 (IRF3) and interferon alpha/beta receptor subunit 1 (IFNAR1) mRNAs are reduced, leading to translational suppression of IRF3 and instability of IFNAR1 mRNA. Thus, the WTAP‐IRF3/IFNAR1 axis may serve as negative feedback pathway to fine‐tune the activation of IFN‐I signaling, which highlights the roles of m6A in the antiviral response by dictating the fate of mRNAs associated with IFN‐I signaling.  相似文献   
86.
87.
Chemical synapses are asymmetric intercellular junctions through which neurons send nerve impulses to communicate with other neurons or excitable cells. The appropriate formation of synapses, both spatially and temporally, is essential for brain function and depends on the intercellular protein-protein interactions of cell adhesion molecules (CAMs) at synaptic clefts. The CAM proteins link pre- and post-synaptic sites, and play essential roles in promoting synapse formation and maturation, maintaining synapse number and type, accumulating neurotransmitter receptors and ion channels, controlling neuronal differentiation, and even regulating synaptic plasticity directly. Alteration of the interactions of CAMs leads to structural and functional impairments, which results in many neurological disorders, such as autism, Alzheimer’s disease and schizophrenia. Therefore, it is crucial to understand the functions of CAMs during development and in the mature neural system, as well as in the pathogenesis of some neurological disorders. Here, we review the function of the major classes of CAMs, and how dysfunction of CAMs relates to several neurological disorders.  相似文献   
88.
Madore E  Lipman RS  Hou YM  Lapointe J 《Biochemistry》2000,39(23):6791-6798
The conformation of a tRNA in its initial contact with its cognate aminoacyl-tRNA synthetase was investigated with the Escherichia coli glutamyl-tRNA synthetase-tRNA(Glu) complex. Covalent complexes between the periodate-oxidized tRNA(Glu) and its synthetase were obtained. These complexes are specific since none were formed with any other oxidized E. coli tRNA. The three major residues cross-linked to the 3'-terminal adenosine of oxidized tRNA(Glu) are Lys115, Arg209, and Arg48. Modeling of the tRNA(Glu)-glutamyl-tRNA synthetase based on the known crystal structures of Thermus thermophilus GluRS and of the E. coli tRNA(Gln)-glutaminyl-tRNA synthetase complex shows that these three residues are located in the pocket that binds the acceptor stem, and that Lys115, located in a 26 residue loop closed by coordination to a zinc atom in the tRNA acceptor stem-binding domain, is the first contact point of the 3'-terminal adenosine of tRNA(Glu). In our model, we assume that the 3'-terminal GCCA single-stranded segment of tRNA(Glu) is helical and extends the stacking of the acceptor stem. This assumption is supported by the fact that the 3' CCA sequence of tRNA(Glu) is not readily circularized in the presence of T4 RNA ligase under conditions where several other tRNAs are circularized. The two other cross-linked sites are interpreted as the contact sites of the 3'-terminal ribose on the enzyme during the unfolding and movement of the 3'-terminal GCCA segment to position the acceptor ribose in the catalytic site for aminoacylation.  相似文献   
89.
福建柏开花与结实物候期的研究   总被引:4,自引:0,他引:4  
福建柏1年2次花期,春花期4—5月,果期当年10月,种子无生活力;秋花期9~10月,果期翌年10月,种子有生活力,有效花期在秋季。开花结实的生物学及物候学特性与适生区的地点、地类、海拔、温度等地理气候因子紧密相关,总体变异规律:秋花期、球果成熟期、种子散落期山区比半山区早,半山区比丘陵区早,高海拔地区比低海拔地区早.发芽率山区〉半山区〉丘陵区。  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号