首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4465篇
  免费   376篇
  国内免费   421篇
  5262篇
  2024年   11篇
  2023年   67篇
  2022年   149篇
  2021年   216篇
  2020年   155篇
  2019年   243篇
  2018年   196篇
  2017年   150篇
  2016年   181篇
  2015年   294篇
  2014年   338篇
  2013年   340篇
  2012年   421篇
  2011年   438篇
  2010年   236篇
  2009年   187篇
  2008年   213篇
  2007年   207篇
  2006年   189篇
  2005年   155篇
  2004年   125篇
  2003年   106篇
  2002年   86篇
  2001年   78篇
  2000年   44篇
  1999年   56篇
  1998年   42篇
  1997年   45篇
  1996年   43篇
  1995年   29篇
  1994年   37篇
  1993年   17篇
  1992年   27篇
  1991年   22篇
  1990年   16篇
  1989年   12篇
  1988年   11篇
  1987年   14篇
  1986年   7篇
  1985年   19篇
  1983年   2篇
  1980年   2篇
  1976年   4篇
  1975年   3篇
  1974年   3篇
  1973年   4篇
  1972年   6篇
  1971年   5篇
  1970年   2篇
  1967年   2篇
排序方式: 共有5262条查询结果,搜索用时 15 毫秒
51.
52.
A new C-type lectin-like gene encodes 293 amino acids and maps to chromosome 19p13.3 adjacent to the previously described C-type lectin genes, CD23, dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN), and DC-SIGN-related protein (DC-SIGNR). The four genes form a tight cluster in an insert size of 105 kb and have analogous genomic structures. The new C-type lectin-like molecule, designated liver and lymph node sinusoidal endothelial cell C-type lectin (LSECtin), is a type II integral membrane protein of approximately 40 kDa in size with a single C-type lectin-like domain at the COOH terminus, closest in homology to DC-SIGNR, DC-SIGN, and CD23. LSECtin mRNA was only expressed in liver and lymph node among 15 human tissues tested, intriguingly neither expressed on hematopoietic cell lines nor on monocyte-derived dendritic cells (DCs). Moreover, LSECtin is expressed predominantly by sinusoidal endothelial cells of human liver and lymph node and co-expressed with DC-SIGNR. LSECtin binds to mannose, GlcNAc, and fucose in a Ca(2+)-dependent manner but not to galactose. Our results indicate that LSECtin is a novel member of a family of proteins comprising CD23, DC-SIGN, and DC-SIGNR and might function in vivo as a lectin receptor.  相似文献   
53.
本文用~(125)Ⅰ标记LC-1进行了一些体内外实验。实验结果表明:LC-1单抗的结合常数为4.8×10~8M~(-1),LC-1针对的SPC-A_1细胞表面抗原的位点数为7.2×10~4/细胞;LC-1与LAC-122两单抗针对的抗原决定簇没有交叉;用蛋白酶和过碘酸钠处理SPC-A_1细胞,前者对LC-1的结合抑制39%,后者抑制66%;LC- 1不但有较强的体外结合靶细胞的能力,从LC-1在荷瘤裸鼠中的组织器官分布来看,LC-1与肿瘤有较高的体内亲和性,并且是特异性的结合。  相似文献   
54.
55.
Neuronal migration is, along with axon guidance, one of the fundamental mechanisms underlying the wiring of the brain. As other organs, the nervous system has acquired the ability to grow both in size and complexity by using migration as a strategy to position cell types from different origins into specific coordinates, allowing for the generation of brain circuitries. Guidance of migrating neurons shares many features with axon guidance, from the use of substrates to the specific cues regulating chemotaxis. There are, however, important differences in the cell biology of these two processes. The most evident case is nucleokinesis, which is an essential component of migration that needs to be integrated within the guidance of the cell. Perhaps more surprisingly, the cellular mechanisms underlying the response of the leading process of migrating cells to guidance cues might be different to those involved in growth cone steering, at least for some neuronal populations.The migration of newly born neurons is a precisely regulated process that is critical for the development of brain architecture. Neurons arise from the proliferative epithelium that covers the ventricular space throughout the neural tube, an area named the ventricular zone (VZ). From there, newly born neurons adopt two main strategies to disperse throughout the central nervous system (CNS), designated as radial and tangential migration (Hatten 1999; Marín and Rubenstein 2003). During radial migration, neurons follow a trajectory that is perpendicular to the ventricular surface, moving alongside radial glial fibers expanding the thickness of the neural tube. In contrast, tangentially migrating neurons move in trajectories that are parallel to the ventricular surface and orthogonal to the radial glia palisade (Fig. 1). Besides their relative orientation, some of the basic mechanisms underlying the movement of cells using each of these two modes of migration are also different. For example, radially migrating neurons often use radial glial fibers as substrate, whereas tangentially migrating neurons do not seem to require their support to migrate. Even so, neurons may alternate from radial to tangential movement and vice versa during the course of their migration. This suggests that both types of migrations share common principles, in particular those directly related to the cell biology of movement (Marín et al. 2006).Open in a separate windowFigure 1.Representative migrations in the developing CNS. Multiple migrations coexist during embryonic development at different areas of the central nervous system. This schema summarizes some of these migrations during the second week of the embryonic period in the mouse. Neurons use tangential and radial migration to reach their final destination; both strategies are used by the same neurons at different stages of development (i.e., cortical interneurons in the forebrain and precerebellar neurons in the hindbrain). (IML) intermediolateral region of the spinal cord; (IO) inferior olive nucleus; (LGE) lateral ganglionic eminence; (LRN) lateral reticular nucleus; (MGE) medial ganglionic eminence; (NCx) neocortex; (OB) olfactory bulb.One of the structures that better illustrates how both types of migrations are integrated during brain development is the cerebral cortex, and so we will primarily refer to studies performed on cortical neurons for this review. The adult cerebral cortex contains two main classes of neurons: glutamatergic cortical projection neurons (also known as pyramidal cells) and GABAergic interneurons. Pyramidal cells are generated in the ventricular zone (VZ) of the embryonic pallium—the roof of the telencephalon—and reach their final position by radial migration (Rakic 2007). In contrast, cortical interneurons are born in the subpallium—the base of telencephalon—and reach the cerebral cortex through a long tangential migration (Corbin et al. 2001; Marín and Rubenstein 2001).The earliest cortical neurons form a transient structure known as the preplate, around embryonic day 10 (E10) of gestation age in the mouse. This primordial layer consists of Cajal-Retzius cells and the first cohort of pyramidal neurons, which will eventually populate the subplate. Cajal-Retzius cells, which play important roles during neuronal migration, arise from discrete pallial sources and colonize the entire surface of the cortex through tangential migration (Bielle et al. 2005; Takiguchi-Hayashi et al. 2004; Yoshida et al. 2006). The next cohort of pyramidal cells forms the cortical plate (CP) by intercalating in the preplate and splitting this primitive structure in a superficial layer, the marginal zone (MZ or layer I), and a deep layer, the subplate. The development of the neocortex progresses with new waves of neurons that occupy progressively more superficial positions within the CP (Gupta et al. 2002; Marín and Rubenstein 2003). Birth dating studies have shown that layers II–VI of the cerebral cortex are generated in an “inside-out” sequence. Neurons generated earlier reside in deeper layers, whereas later-born neurons migrate past existing layers to form superficial layers (Angevine and Sidman 1961; Rakic 1974). In parallel to this process, GABAergic interneurons migrate to the cortex, where they disperse tangentially via highly stereotyped routes in the MZ, SP, and lower intermediate zone/subventricular zone (IZ/SVZ) (Lavdas et al. 1999). Interneurons then switch from tangential to radial migration to adopt their final laminar position in the cerebral cortex (Ang et al. 2003; Polleux et al. 2002; Tanaka et al. 2003).  相似文献   
56.
Huang  Yanping  Wang  Baowei  Liu  Guodong  Ge  Wenhua  Zhang  Mingai  Yue  Bin  Kong  Min 《Biological trace element research》2020,194(2):482-492
Biological Trace Element Research - This study investigated the effects of dietary supplementation of Bacillus subtilis-zinc on growth rates of the body and organs, nutrient utilization, microbial...  相似文献   
57.
58.
Rho‐associated kinase (ROCK) plays a critical role in pressure overload‐induced left ventricular remodelling. However, the underlying mechanism remains unclear. Here, we reported that TGF‐β1‐induced ROCK elevation suppressed BMP‐2 level and strengthened fibrotic response. Exogenous BMP‐2 supply effectively attenuated TGF‐β1 signalling pathway through Smad6‐Smurf‐1 complex activation. In vitro cultured cardiomyocytes, mechanical stretch up‐regulated cardiac TGF‐β1, TGF‐β1‐dependent ROCK and down‐regulated BMP‐2, but BMP‐2 level could be reversed through blocking TGF‐β1 receptor by SB‐431542 or inhibition of ROCK by Y‐27632. TGF‐β1 could also activate ROCK and suppress endogenous BMP‐2 level in a dose‐dependent manner. Knock‐down BMP‐2 enhanced TGF‐β1‐mediated PKC‐δ and Smad3 signalling cascades. In contrast, treatment with Y‐27632 or SB‐431542, respectively suppressed ROCK‐dependent PKC‐δ and Smad3 activation, but BMP‐2 was only up‐regulated by Y‐27632. In addition, BMP‐2 silencing abolished the effect of Y‐27632, but not SB‐431542 on suppression of TGF‐β1 pathway. Further experiments showed that Smad6 Smurf1 interaction were required for BMP‐2‐evoked antagonizing effects. Smad6 overexpression attenuated TGF‐β1‐induced activation of PKC‐δ and Smad3, promoted TGF‐β RI degradation in BMP‐2 knock‐down cardiomyocytes, and could be abolished after knocking‐down Smurf‐1, in which Smad6/Smurf1 complex formation was critically involved. In vivo data showed that pressure overload‐induced collagen deposition was attenuated, cardiac function was improved and TGF‐β1‐dependent activation of PKC‐δ and Smad3 was reduced after 2 weeks treatment with rhBMP‐2(0.5 mg/kg) or Y‐27632 (10 mg/kg) in mice that underwent surgical transverse aortic constriction. In conclusion, we propose that BMP‐2, as a novel fibrosis antagonizing cytokine, may have potential beneficial effect in attenuating pressure overload‐induced cardiac fibrosis.  相似文献   
59.
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号