首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   913篇
  免费   63篇
  2024年   2篇
  2023年   5篇
  2022年   20篇
  2021年   29篇
  2020年   22篇
  2019年   22篇
  2018年   40篇
  2017年   30篇
  2016年   41篇
  2015年   40篇
  2014年   66篇
  2013年   66篇
  2012年   71篇
  2011年   85篇
  2010年   64篇
  2009年   36篇
  2008年   58篇
  2007年   63篇
  2006年   69篇
  2005年   32篇
  2004年   29篇
  2003年   19篇
  2002年   14篇
  2001年   2篇
  2000年   4篇
  1999年   6篇
  1998年   2篇
  1997年   4篇
  1996年   5篇
  1995年   5篇
  1994年   2篇
  1993年   1篇
  1992年   2篇
  1991年   3篇
  1989年   3篇
  1988年   1篇
  1985年   3篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
  1980年   2篇
  1978年   1篇
  1973年   2篇
  1966年   1篇
  1965年   1篇
排序方式: 共有976条查询结果,搜索用时 99 毫秒
901.
Neuroblastoma is the most common extracranial solid tumour of infancy. Pathological activation of glucose consumption, glycolysis and glycolysis‐activating Akt kinase occur frequently in neuroblastoma cells, and these changes correlate with poor prognosis of patients. Therefore, several inhibitors of glucose utilization and the Akt kinase activity are in preclinical trials as potential anti‐cancer drugs. However, metabolic plasticity of cancer cells might undermine efficacy of this approach. In this work, we identified oxidative phosphorylation as compensatory mechanism preserving viability of neuroblastoma cells with inhibited glucose uptake/Akt kinase. It was oxidative phosphorylation that maintained intracellular level of ATP and proliferative capacity of these cells. The oxidative phosphorylation inhibitors (rotenone, tetrathiomolybdate) synergized with inhibitor of the Akt kinase/glucose uptake in down‐regulation of both viability of neuroblastoma cells and clonogenic potential of cells forming neuroblastoma spheroids. Interestingly, tetrathiomolybdate acted as highly specific inhibitor of oxygen consumption and activator of lactate production in neuroblastoma cells, but not in normal fibroblasts and neuronal cells. Moreover, the reducing effect of tetrathiomolybdate on cell viability and the level of ATP in the cells with inhibited Akt kinase/glucose uptake was also selective for neuroblastoma cells. Therefore, efficient elimination of neuroblastoma cells requires inhibition of both glucose uptake/Akt kinase and oxidative phosphorylation activities. The use of tetrathiomolybdate as a mitochondrial inhibitor contributes to selectivity of this combined treatment, preferentially targeting neuroblastoma cells.  相似文献   
902.
Colonic function is controlled by an endogenous clock that allows the colon to optimize its function on the daytime basis. For the first time, this study provided evidence that the clock is synchronized by rhythmic hormonal signals. In rat colon, adrenalectomy decreased and repeated applications of dexamethasone selectively rescued circadian rhythm in the expression of the clock gene Per1. Dexamethasone entrained the colonic clock in explants from mPer2Luc mice in vitro. In contrast, pinealectomy had no effect on the rat colonic clock, and repeated melatonin injections were not able to rescue the clock in animals maintained in constant light. Additionally, melatonin did not entrain the clock in colonic explants from mPer2Luc mice in vitro. However, melatonin affected rhythmic regulation of Nr1d1 gene expression in vivo. The findings provide novel insight into possible beneficial effects of glucocorticoids in the treatment of digestive tract-related diseases, greatly exceeding their anti-inflammatory action.  相似文献   
903.
904.
The efficacy of fenofibrate in the treatment of hepatic steatosis has not been clearly demonstrated. In this study, we investigated the effects of fenofibrate and silymarin, administered as monotherapy and in combination to existing hepatic steatosis in a unique strain of hereditary hypertriglyceridemic rats (HHTg), a non-obese model of metabolic syndrome. HHTg rats were fed a standard diet without or with fenofibrate (100 mg/kg b.wt./day) or with silymarin (1%) or with a combination of fenofibrate with silymarin for four weeks. Fenofibrate alone and in combination with silymarin decreased serum and liver triglycerides and cholesterol and increased HDL cholesterol. These effects were associated with the decreased gene expression of enzymes involved in lipid synthesis and transport, while enzymes of lipid conversion were upregulated. The combination treatment had a beneficial effect on the gene expression of hepatic cytochrome P450 (CYP) enzymes. The expression of the CYP2E1 enzyme, which is source of hepatic reactive oxygen species, was reduced. In addition, fenofibrate-induced increased CYP4A1 expression was decreased, suggesting a reduction in the pro-inflammatory effects of fenofibrate. These results show high efficacy and mechanisms of action of the combination of fenofibrate with silymarin in treating hepatic steatosis and indicate the possibility of protection against disorders in which oxidative stress and inflammation are involved.  相似文献   
905.
The human neuronal Cys‐loop ligand‐gated ion channel superfamily of ion channels are important determinants of human behavior and the target of many drugs. It is essential for their structural characterization to achieve high‐level expression in a functional state. The aim of this work was to establish stable mammalian cell lines that enable high‐level heterologous production of pure receptors in a state that supports agonist‐induced allosteric conformational changes. In a tetracycline‐inducible stable human embryonic kidney cells (HEK293S) cell line, GABAA receptors containing α1 and β3 subunits could be expressed with specific activities of 29–34 pmol/mg corresponding to 140–170 pmol/plate, the highest expression level reported so far. Comparable figures for serotonin (5‐HT3A) receptors were 49–63 pmol/mg and 245–315 pmol/plate. The expression of 10 nmol of either receptor in suspension in a bioreactor required 0.3–3.0 L. Both receptor constructs had a FLAG epitope inserted at the N‐terminus and could be purified in one step after solubilization using ANTI‐FLAG affinity chromatography with yields of 30–40%. Purified receptors were functional. Binding of the agonist [3H]muscimol to the purified GABAAR was enhanced allosterically by the general anesthetic etomidate, and purified 5‐hydroxytryptamine‐3A receptor supported serotonin‐stimulated cation flux when reconstituted into lipid vesicles.  相似文献   
906.
907.
The incidence of infections due to organisms resistant to β-lactam antibiotics has increased sharply in recent years. The goal of this study was to investigate the β-lactam resistance in 151 Escherichia coli strains isolated from chickens over a two-year period. Extended spectrum β-lactamases (ESBLs) were present in 24 strains (16%), ESBL phenotype was identified by interpretative reading of minimal inhibitory concentration values of ceftriaxon (CRT ≥ 7.1 mg/L), ceftazidime (CAZ ≥ 3.4 mg/L) and ceftiofur (CFF ≥ 8.7 mg/L). PCR detection revealed the presence of the bla CMY-2 gene and CTX-M-1 group. We detected high resistance to ampicillin (92%), streptomycin (63%), tetracyclin (70%), ceftiofur (40%), floroquinolones (enrofloxacin 68%, ciprofloxacin 62%), florfenicol (18%), chloramphenicol (21%) and cotrimoxazol (43%). We also investigated the presence of virulence factors and mobile genetic elements, and performed plasmid replicon typing in 24 selected strains. The most prevalent integrase among the isolates was the integrase 1 with gene cassettes dfrA, aadA and genes sul1 and sul2. Plasmid mediated quinolone resistances (qnrS) were also detected in two strains. Plasmid typing showed that the Y and IncI1 were dominant plasmid replicons. The genes iss, kpsII, tsh, iutA were the most frequently detected virulence genes in ESBL-positive strains. These results demonstrate that broilers in Slovakian food markets and farms could be the source of ESBL-producing E. coli, as well as virulent and resistant strains representing a potential risk for the human population.  相似文献   
908.
Ischemic preconditioning (IPC) represents an important adaptation of CNS to sub-lethal ischemia, which results in increased tolerance of CNS to the lethal ischemia. Ischemia-induced mitochondrial apoptosis is considered to be an important event leading to neuronal cell death after cerebral blood flow arrest. In presented study, we have determined the effect of IPC on ischemia/reperfusion-induced mitochondrial apoptosis. Global brain ischemia was induced by permanent occlusion of vertebral arteries and temporal occlusion of carotid arteries for 15 min. Rats were preconditioned by 5 min of sub-lethal ischemia and 2 days later 15 min of lethal ischemia was induced. With respect to mitochondrial apoptosis initiation, translocation of p53 to mitochondria was observed in hippocampus but not in cerebral cortex. However, level of both apoptotic bax and anti-apoptotic bcl-xl in both hippocampal and cortical mitochondria was unchanged after global brain ischemia. Detection of genomic DNA fragmentation as well as Fluoro-Jade C staining showed that ischemia induces apoptosis in vulnerable CA1 layer of rat hippocampus. IPC abolished completely ischemia-induced translocation of p53 to mitochondria and had significant protective effect on ischemia-induced DNA fragmentation. In addition, significant decrease of Fluoro-Jade C positive cells was observed as well. Our results indicate that IPC abolished almost completely both initiation and execution of mitochondrial apoptosis induced by global brain ischemia.  相似文献   
909.
TCR gene rearrangement generates diversity of T lymphocytes by V(D)J recombination. Ig genes are rearranged in B cells using the same enzyme machinery. Physiologically, TCR gene is postulated to rearrange exclusively in T lineage, but malignant B precursor lymphoblasts contain rearranged TCR genes in most patients. Several mechanisms by which malignant cells break the regulation of V(D)J recombination have been proposed. In this study we show that incomplete TCR delta rearrangements V2-D3 and D2-D3 occur each in up to 16% alleles in B lymphocytes of all healthy donors studied, but complete VDJ rearrangement was negative at the sensitivity limit of 1%. Data are based on real-time quantitative PCR validated by PAGE and sequencing of the cloned products. Therefore, TCR genes rearrange not exclusively in T lineage. This study opens up further questions regarding the exact extent of the "cross-lineage" TCR or Ig rearrangements in normal lymphocytes, specific subsets in which the cross-lineage rearrangements occur, and the physiological importance of these rearrangements.  相似文献   
910.
The Fanconi anemia (FA) pathway is implicated in DNA repair and cancer predisposition. Central to this pathway is the FA core complex, which is targeted to chromatin by FANCM and FAAP24 following replication stress. Here we show that FANCM and FAAP24 interact with the checkpoint protein HCLK2 independently of the FA core complex. In addition to defects in FA pathway activation, downregulation of FANCM or FAAP24 also compromises ATR/Chk1-mediated checkpoint signaling, leading to defective Chk1, p53, and FANCE phosphorylation; 53BP1 focus formation; and Cdc25A degradation. As a result, FANCM and FAAP24 deficiency results in increased endogenous DNA damage and a failure to efficiently invoke cell-cycle checkpoint responses. Moreover, we find that the DNA translocase activity of FANCM, which is dispensable for FA pathway activation, is required for its role in ATR/Chk1 signaling. Our data suggest that DNA damage recognition and remodeling activities of FANCM and FAAP24 cooperate with ATR/Chk1 to promote efficient activation of DNA damage checkpoints.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号