首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   276篇
  免费   72篇
  2023年   1篇
  2022年   5篇
  2021年   3篇
  2020年   5篇
  2019年   6篇
  2018年   4篇
  2017年   6篇
  2016年   8篇
  2015年   6篇
  2014年   14篇
  2013年   8篇
  2012年   16篇
  2011年   9篇
  2010年   11篇
  2009年   11篇
  2008年   17篇
  2007年   11篇
  2006年   11篇
  2005年   18篇
  2004年   16篇
  2003年   15篇
  2002年   8篇
  2001年   10篇
  2000年   10篇
  1999年   13篇
  1998年   10篇
  1997年   5篇
  1996年   4篇
  1995年   9篇
  1994年   3篇
  1993年   4篇
  1992年   11篇
  1991年   9篇
  1990年   10篇
  1989年   7篇
  1988年   6篇
  1987年   4篇
  1986年   3篇
  1983年   7篇
  1982年   5篇
  1981年   1篇
  1978年   1篇
  1970年   1篇
  1968年   1篇
  1962年   1篇
  1959年   1篇
  1957年   2篇
  1905年   1篇
排序方式: 共有348条查询结果,搜索用时 15 毫秒
71.
Campylobacter jejuni is a leading cause of bacterial gastroenteritis in the developed world. Despite its prevalence, its mechanisms of pathogenesis are poorly understood. Peptidoglycan (PG) is important for helical shape, colonization, and host-pathogen interactions in C. jejuni. Therefore, changes in PG greatly impact the physiology of this organism. O-acetylation of peptidoglycan (OAP) is a bacterial phenomenon proposed to be important for proper cell growth, characterized by acetylation of the C6 hydroxyl group of N-acetylmuramic acid in the PG glycan backbone. The OAP gene cluster consists of a PG O-acetyltransferase A (patA) for translocation of acetate into the periplasm, a PG O-acetyltransferase B (patB) for O-acetylation, and an O-acetylpeptidoglycan esterase (ape1) for de-O-acetylation. In this study, reduced OAP in ΔpatA and ΔpatB had minimal impact on C. jejuni growth and fitness under the conditions tested. However, accumulation of OAP in Δape1 resulted in marked differences in PG biochemistry, including O-acetylation, anhydromuropeptide levels, and changes not expected to result directly from Ape1 activity. This suggests that OAP may be a form of substrate level regulation in PG biosynthesis. Ape1 acetylesterase activity was confirmed in vitro using p-nitrophenyl acetate and O-acetylated PG as substrates. In addition, Δape1 exhibited defects in pathogenesis-associated phenotypes, including cell shape, motility, biofilm formation, cell surface hydrophobicity, and sodium deoxycholate sensitivity. Δape1 was also impaired for chick colonization and adhesion, invasion, intracellular survival, and induction of IL-8 production in INT407 cells in vitro. The importance of Ape1 in C. jejuni biology makes it a good candidate as an antimicrobial target.  相似文献   
72.
73.
A primary site of infection by human adenoviruses is lymphoid cells. However, analysis of the viral control elements and the cellular factors that regulate adenoviral gene expression in lymphocytes has not been reported. The adenovirus early region 3 (ES) gene products are involved in the maintenance of viral persistence by complexing with the class I MHC antigens, thus preventing their cell surface expression with a resultant decrease in host immunologic destruction. To determine whether different cellular factors were involved in E3 regulation in lymphocytes as compared with HeLa cells, both DNA binding and transfection analysis with the E3 promoter in both cell types were performed. These studies detected two novel domains referred to as L1 and L2 with a variety of lymphoid but not HeLa extracts. Each of these domains possessed strong homology to motifs previously found to bind the cellular factor NF-kappa B. Transfections of E3 constructs linked to the chloramphenicol acetyltransferase gene revealed that mutagenesis of the distal NF-kappa B motif (L2) had minimal effects on promoter expression in HeLa cells, but resulted in dramatic decreases in expression by lymphoid cells. In contrast, mutagenesis of proximal NF-kappa B motif (L1) had minimal effects on gene expression in both HeLa cells and lymphoid cells but resulted in a small, but reproducible, increase in gene expression in lymphoid cells when coupled to the L2 mutation. Reversing the position and subsequent mutagenesis of the L1 and L2 domains indicated that the primary sequence of these motifs rather than their position in the E3 promoter was critical for regulating gene expression.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
74.
Fusion of plant protoplasts by electric fields   总被引:4,自引:1,他引:3       下载免费PDF全文
The electrical fusion technique of Zimmermann and Scheurich (1981 Planta 151: 26-32) has been used to fuse mesophyll protoplasts of Avena, Zea, Vigna, Petunia, and Amaranthus. Electrical fusion proves to be a simple, effective, and general fusion technique that can be controlled to form either dikaryons or large multinucleate fusion bodies. In addition, we show that Vigna mesophyll protoplasts that are subjected to the electrical fields used in this technique are viable in culture. The construction of the fusion chambers, necessary electrical equipment, and the fusion protocol are described in sufficient detail for reproduction of the technique.  相似文献   
75.
76.
77.
78.
Phosphatidylethanolamine methyltransferase (PEMT) and phospholipid methyltransferase (PLMT), which are encoded by the CHO2 and OPI3 genes, respectively, catalyze the three-step methylation of phosphatidylethanolamine to phosphatidylcholine in Saccharomyces cerevisiae. Regulation of PEMT and PLMT as well as CHO2 mRNA and OPI3 mRNA abundance was examined in S. cerevisiae cells supplemented with phospholipid precursors. The addition of choline to inositol-containing growth medium repressed the levels of CHO2 mRNA and OPI3 mRNA abundance in wild-type cells. The major effect on the levels of the CHO2 mRNA and OPI3 mRNA occurred in response to inositol. Regulation was also examined in cho2 and opi3 mutants, which are defective in PEMT and PLMT activities, respectively. These mutants can synthesize phosphatidylcholine when they are supplemented with choline by the CDP-choline-based pathway but they are not auxotrophic for choline. CHO2 mRNA and OPI3 mRNA were regulated by inositol plus choline in opi3 and cho2 mutants, respectively. However, there was no regulation in response to inositol when the mutants were not supplemented with choline. This analysis showed that the regulation of CHO2 mRNA and OPI3 mRNA abundance by inositol required phosphatidylcholine synthesis by the CDP-choline-based pathway. The regulation of CHO2 mRNA and OPI3 mRNA abundance generally correlated with the activities of PEMT and PLMT, respectively. CDP-diacylglycerol synthase and phosphatidylserine synthase, which are regulated by inositol in wild-type cells, were examined in the cho2 and opi3 mutants. Phosphatidylcholine synthesis was not required for the regulation of CDP-diacylglycerol synthase and phosphatidylserine synthase by inositol.  相似文献   
79.
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号