首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   247篇
  免费   35篇
  2024年   1篇
  2023年   3篇
  2022年   6篇
  2021年   10篇
  2020年   7篇
  2019年   5篇
  2018年   7篇
  2017年   6篇
  2016年   2篇
  2015年   7篇
  2014年   10篇
  2013年   8篇
  2012年   18篇
  2011年   23篇
  2010年   15篇
  2009年   17篇
  2008年   15篇
  2007年   13篇
  2006年   12篇
  2005年   12篇
  2004年   13篇
  2003年   15篇
  2002年   6篇
  2001年   6篇
  2000年   3篇
  1999年   3篇
  1998年   4篇
  1997年   5篇
  1996年   3篇
  1995年   4篇
  1994年   1篇
  1993年   4篇
  1992年   1篇
  1991年   4篇
  1990年   2篇
  1989年   2篇
  1987年   1篇
  1986年   4篇
  1985年   2篇
  1982年   2篇
排序方式: 共有282条查询结果,搜索用时 31 毫秒
61.
62.
Shikimate kinase II was purified to near homogeneity from an Escherichia coli strain which overproduced the enzyme. The apparent Km of this isoenzyme for shikimate was 200 microM, and for ATP it was 160 microM. The Km for shikimate is approximately 100-fold lower than the Km of shikimate kinase I, suggesting that shikimate kinase II is the isoenzyme normally functioning in aromatic biosynthesis. Shikimate kinase II is dependent on metal ions for activity.  相似文献   
63.
The proU locus in Escherichia coli encodes an important osmoregulatory function which mediates the growth-promoting effect of L-proline and glycine betaine in high-osmolarity media. This locus was cloned, in contiguity with a closely linked Tn10 insertion, onto a multicopy plasmid directly from the E. coli chromosome. For a given level of osmotic stress, the magnitude of osmoresponsive induction of a single-copy proU::lac fusion was reduced in strains with multiple copies of the proU+ genes; in comparison with haploid proU+ strains, strains with the multicopy proU+ plasmids also exhibited enhanced osmotolerance in media supplemented with 1 mM L-proline or glycine betaine. Experiments involving subcloning, Tn1000 mutagenesis, and interplasmid complementation in a deletion mutant provided evidence for the presence at this locus of two cistrons, both of which are necessary for the expression of ProU function. We propose the designations proU for the gene originally identified by the proU224::Mu d1(lac Ap) insertion and proV for the gene upstream (that is, counterclockwise) of proU.  相似文献   
64.
65.
66.
67.
The EF-hand protein with a helix-loop-helix Ca(2+) binding motif constitutes one of the largest protein families and is involved in numerous biological processes. To facilitate the understanding of the role of Ca(2+) in biological systems using genomic information, we report, herein, our improvement on the pattern search method for the identification of EF-hand and EF-like Ca(2+)-binding proteins. The canonical EF-hand patterns are modified to cater to different flanking structural elements. In addition, on the basis of the conserved sequence of both the N- and C-terminal EF-hands within S100 and S100-like proteins, a new signature profile has been established to allow for the identification of pseudo EF-hand and S100 proteins from genomic information. The new patterns have a positive predictive value of 99% and a sensitivity of 96% for pseudo EF-hands. Furthermore, using the developed patterns, we have identified zero pseudo EF-hand motif and 467 canonical EF-hand Ca(2+) binding motifs with diverse cellular functions in the bacteria genome. The prediction results imply that pseudo EF-hand motifs are phylogenetically younger than canonical EF-hand motifs. Our prediction of Ca(2+) binding motifs provides not only an insight into the role of Ca(2+) and Ca(2+)-binding proteins in bacterial systems, but also a way to explore and define the role of Ca(2+) in other biological systems (calciomics).  相似文献   
68.
69.
Dehydrins have a key role in protecting plants from dehydration stress. We report here the isolation of two cDNAs coding for the same dehydrin, AmDHN1 and AmDHN1a from salt stressed leaves of Avicennia marina (Forsk.) Vierh. by EST library screening. AmDHN1 was found to contain a retained intron that was absent in AmDHN1a. AmDHN1 expression in the context of various environmental stresses was investigated. In leaves, AmDHN1 shows a diurnal pattern of regulation and is induced only by mannitol application. In roots, AmDHN1 is rapidly induced by salinity (NaCl) and dehydration stress (PEG and mannitol). A fragment of 795 bp corresponding to the 5′ upstream region of AmDHN1 was isolated by TAIL-PCR. In silico analysis of this sequence reveals the presence of putative stress regulatory elements (ABRE, DRE, MYB and MYC binding sequences). Putative phosphorylation sites for Casein kinase II were identified in the AmDHN1a ORF. In vitro phosphorylation of Escherichia coli expressed Trx-AmDHN1a by Casein kinase II was observed that was reversed by Shrimp Alkaline Phosphatase treatment. A putative nuclear targeting domain was identified in the translated AmDHN1a ORF and stably transformed AmDHNIa-GFP was found to show nucleo-cytoplasmic localization in tobacco guard cells. As observed for maize Rab17, the phosphorylation of AmDHN1a may contribute to its nuclear localization.  相似文献   
70.
Cellular senescence is an irreversible proliferation arrest, tumor suppression process and likely contributor to tissue aging. Senescence is often characterized by domains of facultative heterochromatin, called senescence-associated heterochromatin foci (SAHF), which repress expression of proliferation-promoting genes. Given its likely contribution to tumor suppression and tissue aging, it is essential to identify all components of the SAHF assembly pathway. Formation of SAHF in human cells is driven by a complex of histone chaperones, namely, HIRA and ASF1a. In yeast, the complex orthologous to HIRA/ASF1a contains two additional proteins, Hpc2p and Hir3p. Using a sophisticated approach to search for remote orthologs conserved in multiple species through evolution, we identified the HIRA-associated proteins, UBN1 and UBN2, as candidate human orthologs of Hpc2p. We show that the Hpc2-related domain of UBN1, UBN2, and Hpc2p is an evolutionarily conserved HIRA/Hir-binding domain, which directly interacts with the N-terminal WD repeats of HIRA/Hir. UBN1 binds to proliferation-promoting genes that are repressed by SAHF and associates with histone methyltransferase activity that methylates lysine 9 of histone H3, a site that is methylated in SAHF. UBN1 is indispensable for formation of SAHF. We conclude that UBN1 is an ortholog of yeast Hpc2p and a novel regulator of senescence.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号