首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   224篇
  免费   13篇
  2023年   6篇
  2022年   6篇
  2021年   16篇
  2020年   3篇
  2019年   6篇
  2018年   5篇
  2017年   7篇
  2016年   4篇
  2015年   11篇
  2014年   13篇
  2013年   10篇
  2012年   33篇
  2011年   21篇
  2010年   17篇
  2009年   9篇
  2008年   11篇
  2007年   10篇
  2006年   14篇
  2005年   6篇
  2004年   8篇
  2003年   8篇
  2002年   1篇
  2001年   2篇
  2000年   3篇
  1998年   3篇
  1997年   1篇
  1980年   1篇
  1973年   2篇
排序方式: 共有237条查询结果,搜索用时 109 毫秒
181.
Due to the ability to easily accept and donate electrons Mn(III)N-alkylpyridylporphyrins (MnPs) can dismute O(2)(·-), reduce peroxynitrite, but also generate reactive species and behave as pro-oxidants if conditions favour such action. Herein two ortho isomers, MnTE-2-PyP(5+), MnTnHex-2-PyP(5+), and a meta isomer MnTnHex-3-PyP(5+), which differ greatly with regard to their metal-centered reduction potential, E(1/2) (Mn(III)P/Mn(II)P) and lipophilicity, were explored. Employing Mn(III)P/Mn(II)P redox system for coupling with ascorbate, these MnPs catalyze ascorbate oxidation and thus peroxide production. Consequently, cancer oxidative burden may be enhanced, which in turn would suppress its growth. Cytotoxic effects on Caco-2, Hela, 4T1, HCT116 and SUM149 were studied. When combined with ascorbate, MnPs killed cancer cells via peroxide produced outside of the cell. MnTE-2-PyP(5+) was the most efficacious catalyst for peroxide production, while MnTnHex-3-PyP(5+) is most prone to oxidative degradation with H(2) , and thus the least efficacious. A 4T1 breast cancer mouse study of limited scope and success was conducted. The tumour oxidative stress was enhanced and its microvessel density reduced when mice were treated either with ascorbate or MnP/ascorbate; the trend towards tumour growth suppression was detected.  相似文献   
182.
Cytokinesis is the final stage of cell division in which the daughter cells separate. Although a growing body of evidence suggests that cell migration-induced traction forces may be required to provide physical assistance for daughter cells to dissociate during abscission, the role of cell migration in cytokinesis has not been directly elucidated. Recently, we have demonstrated that Crk and paxillin, which are pivotal components of the cell migration machinery, localize to the midbody and are essential for the abscission. These findings provided an important link between the cell migration and cytokinesis machineries and prompted us to dissect the role of cell migration in cytokinesis. We show that cell migration controls the kinetics of cleavage furrowing, midbody extension and abscission and coordinates proper subcellular redistribution of Crk and syntaxin-2 to the midbody after ingression.Key words: cell migration, cytokinesis, midbody, abscission, cleavage furrow, Crk, paxillin, syntaxin-2, ExoT  相似文献   
183.
Abstract

Bacterial cellulose (BC) is one of the prominent biopolymers that has been acquiring attention currently due to its distinctive properties and applications in various fields. The current work presents the isolation of Komagataeibacter saccharivorans strain BC1 isolated from rotten green grapes, followed by biochemical and genotypic characterization, which confirmed that the strain is capable of synthesizing cellulose. Further, production media was designed and certain variables such as carbon, nitrogen sources, pH, and temperature were optimized in order to obtain the maximum concentration of cellulose production. We found mannitol to be the ideal carbon source and yeast extract as the ideal nitrogen source with a highest BC dry yield of 1.81?±?0.25?g/100?mL at pH 5.76 for a week at 30?°C.The charcterization of pellicles by FTIR spectrum depicted similar functional groups present in synthesized BC as that of the commercial cellulose. X-ray diffraction revealed that BC showed 82% crystallinity. Surface morphology of the dried pellicle was studied by SEM image which showed that the BC surface was tightly packed with thin fibers with less porosity. Hence the study demonstrates that the isolates of K.saccharivorans could be used to produce a biopolymer in a short period of time using a modified production medium.  相似文献   
184.
185.
186.
The mammalian MAGI proteins play important roles in the maintenance of adherens and tight junctions. The MAGI family of proteins contains modular domains such as WW and PDZ domains necessary for scaffolding of membrane receptors and intracellular signaling components. Loss of MAGI leads to reduced junction stability while overexpression of MAGI can lead to increased adhesion and stabilization of epithelial morphology. However, how Magi regulates junction assembly in epithelia is largely unknown. We investigated the single Drosophila homologue of Magi to study the in vivo role of Magi in epithelial development. Magi is localized at the adherens junction and forms a complex with the polarity proteins, Par3/Bazooka and aPKC. We generated a Magi null mutant and found that Magi null mutants were viable with no detectable morphological defects even though the Magi protein is highly conserved with vertebrate Magi homologues. However, overexpression of Magi resulted in the displacement of Baz/Par3 and aPKC and lead to an increase in the level of PIP3. Interestingly, we found that Magi and Baz functioned in an antagonistic manner to regulate the localization of the apical polarity complex. Maintaining the balance between the level of Magi and Baz is an important determinant of the levels and localization of apical polarity complex.  相似文献   
187.

Background

In many vascular smooth muscle cells (SMCs), ryanodine receptor-mediated Ca2+ sparks activate large-conductance Ca2+-activated K+ (BK) channels leading to lowered SMC [Ca2+]i and vasodilation. Here we investigated whether Ca2+ sparks regulate SMC global [Ca2+]i and diameter in the spiral modiolar artery (SMA) by activating BK channels.

Methods

SMAs were isolated from adult female gerbils, loaded with the Ca2+-sensitive flourescent dye fluo-4 and pressurized using a concentric double-pipette system. Ca2+ signals and vascular diameter changes were recorded using a laser-scanning confocal imaging system. Effects of various pharmacological agents on Ca2+ signals and vascular diameter were analyzed.

Results

Ca2+ sparks and waves were observed in pressurized SMAs. Inhibition of Ca2+ sparks with ryanodine increased global Ca2+ and constricted SMA at 40 cmH2O but inhibition of Ca2+ sparks with tetracaine or inhibition of BK channels with iberiotoxin at 40 cmH2O did not produce a similar effect. The ryanodine-induced vasoconstriction observed at 40 cmH2O was abolished at 60 cmH2O, consistent with a greater Ca2+-sensitivity of constriction at 40 cmH2O than at 60 cmH2O. When the Ca2+-sensitivity of the SMA was increased by prior application of 1 nM endothelin-1, ryanodine induced a robust vasoconstriction at 60 cmH2O.

Conclusions

The results suggest that Ca2+ sparks, while present, do not regulate vascular diameter in the SMA by activating BK channels and that the regulation of vascular diameter in the SMA is determined by the Ca2+-sensitivity of constriction.
  相似文献   
188.
The effect of solvents of varying polarity on the absorption and fluorescence emission of the Schiff base, 2‐{[3‐(1H‐benzimidazole‐2‐yl) phenyl]carbonoimidoyl}phenol, was studied using Lippert‐Mataga bulk polarity function, Reichardt's microscopic solvent polarity parameter and Kamlet's multiple linear regression approach. The spectral properties follow Reichardt's microscopic solvent polarity parameter better than Lippert‐Mataga bulk polarity parameter, indicating the presence of both general solute–solvent interactions and specific interactions. Catalan's multiple linear regression approach indicates the major role of solvent polarizability/dipolarity influence compared with solvent acidity or basicity. The solvatochromic effect was utilized to calculate the dipole moments of ground and excited states of the Schiff base using different methods. Bathochromic shift in the emission spectrum and the increase in dipole moment in the excited state signifies the intramolecular charge transfer character in the emitting singlet state. Fluorescence quenching by aniline was also studied in 1,4‐dioxane and n‐butanol, and the results were analyzed using sphere of action static quenching and finite sink approximation models. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
189.
More than 40% of patients with luminal breast cancer treated with endocrine therapy agent tamoxifen demonstrate resistance. Emerging evidence suggests tumor initiating cells (TICs) and aberrant activation of Src and Akt signaling drive tamoxifen resistance and relapse. We previously demonstrated that aryl hydrocarbon receptor ligand aminoflavone (AF) inhibits the expression of TIC gene α6-integrin and disrupts mammospheres derived from tamoxifen-sensitive breast cancer cells. In the current study, we hypothesize that tamoxifen-resistant (TamR) cells exhibit higher levels of α6-integrin than tamoxifen-sensitive cells and that AF inhibits the growth of TamR cells by suppressing α6-integrin–Src–Akt signaling. In support of our hypothesis, TamR cells and associated mammospheres were found to exhibit elevated α6-integrin expression compared with their tamoxifen-sensitive counterparts. Furthermore, tumor sections from patients who relapsed on tamoxifen showed enhanced α6-integrin expression. Gene expression profiling from the TCGA database further revealed that basal-like breast cancer samples, known to be largely unresponsive to tamoxifen, demonstrated higher α6-integrin levels than luminal breast cancer samples. Importantly, AF reduced TamR cell viability and disrupted TamR mammospheres while concomitantly reducing α6-integrin messenger RNA and protein levels. In addition, AF and small interfering RNA against α6-integrin blocked tamoxifen-stimulated proliferation of TamR MCF-7 cells and further sensitized these cells to tamoxifen. Moreover, AF reduced Src and Akt signaling activation in TamR MCF-7 cells. Our findings suggest elevated α6-integrin expression is associated with tamoxifen resistance and AF suppresses α6-integrin–Src–Akt signaling activation to confer activity against TamR breast cancer.  相似文献   
190.
Replication fork stalling and collapse is a major source of genome instability leading to neoplastic transformation or cell death. Such stressed replication forks can be conservatively repaired and restarted using homologous recombination (HR) or non-conservatively repaired using micro-homology mediated end joining (MMEJ). HR repair of stressed forks is initiated by 5’ end resection near the fork junction, which permits 3’ single strand invasion of a homologous template for fork restart. This 5’ end resection also prevents classical non-homologous end-joining (cNHEJ), a competing pathway for DNA double-strand break (DSB) repair. Unopposed NHEJ can cause genome instability during replication stress by abnormally fusing free double strand ends that occur as unstable replication fork repair intermediates. We show here that the previously uncharacterized Exonuclease/Endonuclease/Phosphatase Domain-1 (EEPD1) protein is required for initiating repair and restart of stalled forks. EEPD1 is recruited to stalled forks, enhances 5’ DNA end resection, and promotes restart of stalled forks. Interestingly, EEPD1 directs DSB repair away from cNHEJ, and also away from MMEJ, which requires limited end resection for initiation. EEPD1 is also required for proper ATR and CHK1 phosphorylation, and formation of gamma-H2AX, RAD51 and phospho-RPA32 foci. Consistent with a direct role in stalled replication fork cleavage, EEPD1 is a 5’ overhang nuclease in an obligate complex with the end resection nuclease Exo1 and BLM. EEPD1 depletion causes nuclear and cytogenetic defects, which are made worse by replication stress. Depleting 53BP1, which slows cNHEJ, fully rescues the nuclear and cytogenetic abnormalities seen with EEPD1 depletion. These data demonstrate that genome stability during replication stress is maintained by EEPD1, which initiates HR and inhibits cNHEJ and MMEJ.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号