首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   909篇
  免费   195篇
  2020年   7篇
  2019年   9篇
  2018年   9篇
  2017年   7篇
  2016年   15篇
  2015年   20篇
  2014年   21篇
  2013年   35篇
  2012年   41篇
  2011年   32篇
  2010年   26篇
  2009年   18篇
  2008年   34篇
  2007年   36篇
  2006年   30篇
  2005年   26篇
  2004年   39篇
  2003年   34篇
  2002年   34篇
  2001年   45篇
  2000年   35篇
  1999年   22篇
  1998年   23篇
  1997年   15篇
  1996年   11篇
  1995年   21篇
  1994年   14篇
  1993年   16篇
  1992年   24篇
  1991年   35篇
  1990年   28篇
  1989年   31篇
  1988年   27篇
  1987年   20篇
  1986年   23篇
  1985年   18篇
  1984年   18篇
  1983年   8篇
  1982年   12篇
  1981年   15篇
  1980年   18篇
  1979年   17篇
  1978年   12篇
  1977年   9篇
  1974年   16篇
  1973年   10篇
  1971年   9篇
  1970年   9篇
  1969年   8篇
  1968年   8篇
排序方式: 共有1104条查询结果,搜索用时 15 毫秒
91.
NAO is a natural water soluble antioxidant that was isolated and purified from spinach leaves. Using HPLC, NMR, and CMR spectroscopy, the main components were identified as flavonoids and p-coumaric acid derivatives. The NAO was found to be a very effective antioxidant in several in vivo and in vitro biological systems. In the present study, the antioxidant activity of the novel antioxidant glucurinated flavonoid (GF) isolated and characterized from NAO, is compared to well-known antioxidants. In addition, the direct free radical scavenging properties of the purified component GF were studied using the electron spin resonance (ESR) technique. GF and NAO were found to be superior to EGCG and NAC and to the Vitamin E homologue Trolox in inhibiting reactive oxygen species (ROS) formation in the autooxidation system of linoleic acid and in fibroblasts exposed to metal oxidation. GF and NAO were found to inhibit the ESR signal intensity of DMPO-O(2) radical formation during the riboflavin photodynamic reaction. 10 mM GF caused approximately 90% inhibition in the intensity of the ESR signal, while NAO at a concentration of 60 microg/ml caused an inhibition of about 50%. Using the Fenton reaction, GF and NAO were found to inhibit DMPO-OH radical formation. A concentration of 2 mM GF caused a 70% inhibition in the intensity of the DMPO-OH radical ESR signal, while propyl gallate at the same concentration caused only 50% inhibition. Furthermore, both GF and NAO also inhibited the (1)O(2) dependent TEMPO radical generated in the photoradiation TPPS4 system. About 80% inhibition was obtained by 4 mM GF. The results obtained indicate that the natural antioxidants derived from spinach may directly affect the scavenging of ROS and, as a consequence, may be considered as effective sources for combating oxidative damage.  相似文献   
92.
David G  Talbot J  Barrett EF 《Cell calcium》2003,33(3):197-206
Peak values reported for mitochondrial matrix [Ca(2+)] following stimulation have ranged from micromolar to near-millimolar in various cells. Measurements using fluorescent indicators have traditionally used high-affinity dyes such as rhod-2, whose fluorescence would be expected to saturate if matrix [Ca(2+)] approaches millimolar levels. To avoid this potential problem, we loaded lizard motor terminal mitochondria with the low-affinity indicator rhod-5N (K(d) approximately 320 microM). During trains of action potentials at 50Hz, matrix fluorescence transients (measured as F/F(rest)) increased to a plateau level that was maintained throughout the stimulus train. This plateau of matrix [Ca(2+)] occurred in spite of evidence that Ca(2+) continued to enter the terminal and continued to be sequestered by mitochondria. When the stimulation frequency was increased, or when Ca(2+) entry per action potential was increased with the K(+) channel blocker 3,4-diaminopyridine (3,4-DAP), or reduced by lowering bath [Ca(2+)], the rate of rise of matrix [Ca(2+)] changed, but the plateau amplitude remained constant. Calculations demonstrated that the F/F(rest) measured at this plateau corresponded to a matrix [Ca(2+)] of approximately 1 microM. The high K(d) of rhod-5N ensures that this value is not a result of dye saturation, but rather reflects a powerful Ca(2+) buffering mechanism within the matrix of these mitochondria.  相似文献   
93.
Photosynthetic activity and the composition of the photosynthetic apparatus are strongly regulated by environmental conditions. Some visually dramatic changes in pigmentation of cyanobacterial cells that occur during changing nutrient and light conditions reflect marked alterations in components of the major light-harvesting complex in these organisms, the phycobilisome. As noted well over 100 years ago, the pigment composition of some cyanobacteria is very sensitive to ambient wavelengths of light; this sensitivity reflects molecular changes in polypeptide constituents of the phycobilisome. The levels of different pigmented polypeptides or phycobiliproteins that become associated with the phycobilisome are adjusted to optimize absorption of excitation energy present in the environment. This process, called complementary chromatic adaptation, is controlled by a bilin-binding photoreceptor related to phytochrome of vascular plants; however, many other regulatory elements also play a role in chromatic adaptation. My perspectives and biases on the history and significance of this process are presented in this essay. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
94.
Confirming melanocytic lineage and purity is important for experiments using cultured human melanocytes. The objective of this study was to develop a simple, reliable method to evaluate and archive cultured melanocytic cells. Melanocytes were isolated from adult skin biopsies or from neonatal foreskins using standard culturing methods. Fibrin cell blocks (FCBs) were prepared from cultured cells at passages two and six. Fibrin blocks were paraffin-embedded and sectioned for immunohistochemical (CD68, Melan-A, and HMB-45) and H & E staining. Flow cytometry was performed (Melan-A) at passage six. A mixing experiment with cultured melanocytes and fibroblasts was performed and cell population purity was determined by manual counts of positively staining cells in the FCBs and by flow cytometry. The FCB method of evaluating population purity was validated experimentally and by correlation with flow cytometry results. Preparation of a FCB followed by immunohistochemical staining is an easy and inexpensive way to confirm melanocytic lineage, estimate population purity, and provide a permanent archive of cultured cells.  相似文献   
95.
96.
97.
To determine if high-fat (HF) diet-induced changes in adipose tissue cellularity are associated with the presence of paracrine growth factor(s) that alter preadipocyte proliferation, Osborne-Mendel rats were fed either a HF (76% energy) or a low-fat (LF, 12% energy) diet for 85 days. HF-fed rats had greater (P < 0.05) fat pad size, total fat cell number, number of small (30-70 microm) and large (80-140 microm) adipocytes, and percentage of 100- to 140-microm adipocytes compared with LF-fed rats. Preadipocytes in primary cell culture treated with inguinal adipose tissue conditioned medium (ATCM) prepared from HF-fed rats had greater (P < 0.05) proliferation compared with cultures treated with ATCM from LF-fed rats. Proliferative capacity of ATCM prepared from HF-fed rats was attenuated after the stripping of the medium of insulin-like growth factor I using an immunomagnetic bead separation system. These data are consistent with the concept that insulin-like growth factor I is involved in the paracrine regulation of adipogenesis.  相似文献   
98.
99.
We have isolated and examined the gene for the heart isoform of cytochromecoxidase subunit VIIa (COX VIIa-H) in mouse, an isoform gene previously thought to be lacking in rodents. Interspecies amino acid comparisons indicate that mouse COX VIIa-H protein displays 82.5 and 70.9% identity with the bovine and human heart isoforms of COX VIIa, but only 53.7% identity with the paralogous mouse liver isoform (COX VIIa-L). Expression in adult mouse tissues is limited to heart and skeletal muscle, as found in other species. In the early mouse embryo,Cox7alwas the exclusive isoform expressed andCox7ahmRNA was not detectable until day 17postcoitum.That the mouseCox7ahgene characterized in this study is orthologous to the humanCOX7AHgene was also suggested by its mapping to mouse chromosome 7, to a conserved region syntenic with the human chromosome location ofCOX7AH,19q13.1. As a result, all three COX heart isoform genes in mouse group to chromosome 7. Interestingly, mapping of the mouseCox7alto chromosome 9 suggests a new syntenic region between the mouse and the human genomes.  相似文献   
100.
K K Niyogi  A R Grossman    O Bjrkman 《The Plant cell》1998,10(7):1121-1134
A conserved regulatory mechanism protects plants against the potentially damaging effects of excessive light. Nearly all photosynthetic eukaryotes are able to dissipate excess absorbed light energy in a process that involves xanthophyll pigments. To dissect the role of xanthophylls in photoprotective energy dissipation in vivo, we isolated Arabidopsis xanthophyll cycle mutants by screening for altered nonphotochemical quenching of chlorophyll fluorescence. The npq1 mutants are unable to convert violaxanthin to zeaxanthin in excessive light, whereas the npq2 mutants accumulate zeaxanthin constitutively. The npq2 mutants are new alleles of aba1, the zeaxanthin epoxidase gene. The high levels of zeaxanthin in npq2 affected the kinetics of induction and relaxation but not the extent of nonphotochemical quenching. Genetic mapping, DNA sequencing, and complementation of npq1 demonstrated that this mutation affects the structural gene encoding violaxanthin deepoxidase. The npq1 mutant exhibited greatly reduced nonphotochemical quenching, demonstrating that violaxanthin deepoxidation is required for the bulk of rapidly reversible nonphotochemical quenching in Arabidopsis. Altered regulation of photosynthetic energy conversion in npq1 was associated with increased sensitivity to photoinhibition. These results, in conjunction with the analysis of npq mutants of Chlamydomonas, suggest that the role of the xanthophyll cycle in nonphotochemical quenching has been conserved, although different photosynthetic eukaryotes rely on the xanthophyll cycle to different extents for the dissipation of excess absorbed light energy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号