首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1806篇
  免费   171篇
  国内免费   1篇
  1978篇
  2023年   8篇
  2022年   24篇
  2021年   43篇
  2020年   20篇
  2019年   30篇
  2018年   35篇
  2017年   29篇
  2016年   58篇
  2015年   102篇
  2014年   105篇
  2013年   123篇
  2012年   142篇
  2011年   163篇
  2010年   68篇
  2009年   71篇
  2008年   143篇
  2007年   105篇
  2006年   108篇
  2005年   102篇
  2004年   94篇
  2003年   66篇
  2002年   62篇
  2001年   20篇
  2000年   27篇
  1999年   22篇
  1998年   19篇
  1997年   18篇
  1996年   6篇
  1995年   8篇
  1994年   10篇
  1993年   7篇
  1992年   9篇
  1991年   8篇
  1989年   5篇
  1988年   6篇
  1987年   5篇
  1986年   7篇
  1981年   5篇
  1980年   3篇
  1979年   4篇
  1977年   4篇
  1975年   7篇
  1974年   4篇
  1973年   7篇
  1966年   3篇
  1961年   3篇
  1951年   4篇
  1949年   3篇
  1938年   3篇
  1932年   4篇
排序方式: 共有1978条查询结果,搜索用时 0 毫秒
81.
82.
The inheritance of resistance to pyriproxyfen, an insect growth regulator (a juvenoid, with ovicidal and larvicidal activities), was studied in the whitefly Bemisia tabaci (Gennadius). Two parental strains, both belonging to Q biotype, were assayed with pyriproxyfen; a susceptible strain (ALM-1) originating from Spain and a pyriproxyfen-resistant one (Pyri-R) from Israel. The resistance ratio between the two parental strains was approximately 7,000-fold. Concentration-mortality lines for F(1) heterozygous females from reciprocal crosses (SS female symbol X R male symbol and RR female symbol X S male symbol ) were derived by statistical modelling and proved intermediate to those of the parents. The pooled degree of dominance from both reciprocal crosses was +0.26, indicating that resistance was incompletely or partially dominant. Mortality curves for F(2) males produced by virgin F(1) heterozygous females displayed a broad plateau at 50% mortality, indicating that resistance to pyriproxyfen in B. tabaci is conferred primarily by a mutant allele at a single locus. The role of arrhenotoky in influencing the mode of inheritance of resistance, and its selection in field populations, is discussed.  相似文献   
83.
Fluorescein-isothiocyanate dextran (FITC-dextran; MW ∼ 70,000) was used in isolated rat hearts to compare normal vascular perfusion of ventricular myocardium with the pattern and extent of reperfusion following 60 minutes of global ischemia. Its gross distribution in frozen transverse sections through the ventricles was similar to that of sodium fluorescein. However, unlike 0.1% sodium fluorescein, 6.7% FITC-dextran has a viscosity similar to that of blood, and its much higher molecular weight prevents its diffusion beyond the ischemically injured vessels. Furthermore, staining by the alcoholic periodic acid-Schiff technique enabled tracer distribution to be confirmed microscopically and distinguished competent from incompetent vessels in paraffin embedded material.  相似文献   
84.
Floodplain ecosystems are characterized by alternating wet and dry phases and periodic inundation defines their ecological character. Climate change, river regulation and the construction of levees have substantially altered natural flooding and drying regimes worldwide with uncertain effects on key biotic groups. In southern Australia, we hypothesized that soil eukaryotic communities in climate change affected areas of a semi‐arid floodplain would transition towards comprising mainly dry‐soil specialist species with increasing drought severity. Here, we used 18S rRNA amplicon pyrosequencing to measure the eukaryote community composition in soils that had been depleted of water to varying degrees to confirm that reproducible transitional changes occur in eukaryotic biodiversity on this floodplain. Interflood community structures (3 years post‐flood) were dominated by persistent rather than either aquatic or dry‐specialist organisms. Only 2% of taxa were unique to dry locations by 8 years post‐flood, and 10% were restricted to wet locations (inundated a year to 2 weeks post‐flood). Almost half (48%) of the total soil biota were detected in both these environments. The discovery of a large suite of organisms able to survive nearly a decade of drought, and up to a year submerged supports the concept of inherent resilience of Australian semi‐arid floodplain soil communities under increasing pressure from climatic induced changes in water availability.  相似文献   
85.
The c-Jun N-terminal kinase (JNK) pathway forms part of the mitogen-activated protein kinase (MAPK) signaling pathways comprising a sequential three-tiered kinase cascade. Here, an upstream MAP3K (MEKK1) phosphorylates and activates a MAP2K (MKK4 and MKK7), which in turn phosphorylates and activates the MAPK, JNK. The C-terminal kinase domain of MEKK1 (MEKK-C) is constitutively active, while MKK4/7 and JNK are both activated by dual phosphorylation of S/Y, and T/Y residues within their activation loops, respectively. While improvements in the purification of large quantities of active JNKs have recently been made, inadequacies in their yield, purity, and the efficiency of their phosphorylation still exist. We describe a novel and robust method that further improves upon the purification of large yields of highly pure, phosphorylated JNK1β1, which is most suitable for biochemical and biophysical characterization. Codon harmonization of the JNK1β1 gene was used as a precautionary measure toward increasing the soluble overexpression of the kinase. While JNK1β1 and its substrate ATF2 were both purified to >99% purity as GST fusion proteins using GSH-agarose affinity chromatography and each cleaved from GST using thrombin, constitutively-active MEKK-C and inactive MKK4 were separately expressed in E. coli as thioredoxin-His6-tagged proteins and purified using urea refolding and Ni2+-IMAC, respectively. Activation of JNK1β1 was then achieved by successfully reconstituting the JNK MAPK activation cascade in vitro; MEKK-C was used to activate MKK4, which in turn was used to efficiently phosphorylate and activate large quantities of JNK1β1. Activated JNK1β1 was thereafter able to phosphorylate ATF2 with high catalytic efficiency.  相似文献   
86.
Duncan Lee  Gavin Shaddick 《Biometrics》2010,66(4):1238-1246
Summary In studies that estimate the short‐term effects of air pollution on health, daily measurements of pollution concentrations are often available from a number of monitoring locations within the study area. However, the health data are typically only available in the form of daily counts for the entire area, meaning that a corresponding single daily measure of pollution is required. The standard approach is to average the observed measurements at the monitoring locations, and use this in a log‐linear health model. However, as the pollution surface is spatially variable this simple summary is unlikely to be an accurate estimate of the average pollution concentration across the region, which may lead to bias in the resulting health effects. In this article, we propose an alternative approach that jointly models the pollution concentrations and their relationship with the health data using a Bayesian spatio‐temporal model. We compare this approach with the simple spatial average using a simulation study, by investigating the impact of spatial variation, monitor placement, and measurement error in the pollution data. An epidemiological study from Greater London is then presented, which estimates the relationship between respiratory mortality and four different pollutants.  相似文献   
87.
Microbial degradation of the plant cell wall is the primary mechanism by which carbon is utilized in the biosphere. The hydrolysis of xylan, by endo-beta-1,4-xylanases (xylanases), is one of the key reactions in this process. Although amino acid sequence variations are evident in the substrate binding cleft of "family GH10" xylanases (see afmb.cnrs-mrs.fr/CAZY/), their biochemical significance is unclear. The Cellvibrio japonicus GH10 xylanase CjXyn10C is a bi-modular enzyme comprising a GH10 catalytic module and a family 15 carbohydrate-binding module. The three-dimensional structure at 1.85 A, presented here, shows that the sequence joining the two modules is disordered, confirming that linker sequences in modular glycoside hydrolases are highly flexible. CjXyn10C hydrolyzes xylan at a rate similar to other previously described GH10 enzymes but displays very low activity against xylooligosaccharides. The poor activity on short substrates reflects weak binding at the -2 subsite of the enzyme. Comparison of CjXyn10C with other family GH10 enzymes reveals "polymorphisms" in the substrate binding cleft including a glutamate/glycine substitution at the -2 subsite and a tyrosine insertion in the -2/-3 glycone region of the substrate binding cleft, both of which contribute to the unusual properties of the enzyme. The CjXyn10C-substrate complex shows that Tyr-340 stacks against the xylose residue located at the -3 subsite, and the properties of Y340A support the view that this tyrosine plays a pivotal role in substrate binding at this location. The generic importance of using CjXyn10C as a template in predicting the biochemical properties of GH10 xylanases is discussed.  相似文献   
88.

Background

Notch receptors are normally cleaved during maturation by a furin-like protease at an extracellular site termed S1, creating a heterodimer of non-covalently associated subunits. The S1 site lies within a key negative regulatory region (NRR) of the receptor, which contains three highly conserved Lin12/Notch repeats and a heterodimerization domain (HD) that interact to prevent premature signaling in the absence of ligands. Because the role of S1 cleavage in Notch signaling remains unresolved, we investigated the effect of S1 cleavage on the structure, surface trafficking and ligand-mediated activation of human Notch1 and Notch2, as well as on ligand-independent activation of Notch1 by mutations found in human leukemia.

Principal Findings

The X-ray structure of the Notch1 NRR after furin cleavage shows little change when compared with that of an engineered Notch1 NRR lacking the S1-cleavage loop. Likewise, NMR studies of the Notch2 HD domain show that the loop containing the S1 site can be removed or cleaved without causing a substantial change in its structure. However, Notch1 and Notch2 receptors engineered to resist S1 cleavage exhibit unexpected differences in surface delivery and signaling competence: S1-resistant Notch1 receptors exhibit decreased, but detectable, surface expression and ligand-mediated receptor activation, whereas S1-resistant Notch2 receptors are fully competent for cell surface delivery and for activation by ligands. Variable dependence on S1 cleavage also extends to T-ALL-associated NRR mutations, as common class 1 mutations display variable decrements in ligand-independent activation when introduced into furin-resistant receptors, whereas a class 2 mutation exhibits increased signaling activity.

Conclusions/Significance

S1 cleavage has distinct effects on the surface expression of Notch1 and Notch2, but is not generally required for physiologic or pathophysiologic activation of Notch proteins. These findings are consistent with models for receptor activation in which ligand-binding or T-ALL-associated mutations lead to conformational changes of the NRR that permit metalloprotease cleavage.  相似文献   
89.

Background

Cell surface glycosylation patterns are markers of cell type and status. However, the mechanisms regulating surface glycosylation patterns remain unknown.

Methodology/Principal Findings

Using a panel of carbohydrate surface markers, we have shown that cell surface sialylation and fucosylation were downregulated in L1−/y neurons versus L1+/y neurons. Consistently, mRNA levels of sialyltransferase ST6Gal1, and fucosyltransferase FUT9 were significantly reduced in L1−/y neurons. Moreover, treatment of L1+/y neurons with L1 antibodies, triggering signal transduction downstream of L1, led to an increase in cell surface sialylation and fucosylation compared to rat IgG-treated cells. ShRNAs for both ST6Gal1 and FUT9 blocked L1 antibody-mediated enhancement of neurite outgrowth, cell survival and migration. A phospholipase Cγ (PLCγ) inhibitor and shRNA, as well as an Erk inhibitor, reduced ST6Gal1 and FUT9 mRNA levels and inhibited effects of L1 on neurite outgrowth and cell survival.

Conclusions

Neuronal surface sialylation and fucosylation are regulated via PLCγ by L1, modulating neurite outgrowth, cell survival and migration.  相似文献   
90.
It is well known that ethanol preexposure sensitizes the liver to LPS hepatotoxicity. The mechanisms by which ethanol enhances LPS-induced liver injury are not completely elucidated but are known to involve an enhanced inflammatory response. Ethanol exposure also increases the metabolic rate of the liver, and this effect of ethanol on liver is mediated, at least in part, by the sympathetic hormone, epinephrine. However, whether or not the sympathetic nervous system also contributes to the sensitizing effect of ethanol preexposure on LPS-induced liver damage has not been determined. The purpose of this study was therefore to test the hypotheses that 1) epinephrine preexposure enhances LPS-induced liver damage (comparable to that of ethanol preexposure) and that 2) the sympathetic nervous system contributes to the sensitizing effect of ethanol. Accordingly, male C57BL/6J mice were administered epinephrine for 5 days (2 mg/kg per day) via osmotic pumps or bolus ethanol for 3 days (6 g/kg per day) by gavage. Twenty-four hours later, mice were injected with LPS (10 mg/kg ip). Both epinephrine and ethanol preexposure exacerbated LPS-induced liver damage and inflammation. Concomitant administration of propranolol with ethanol significantly attenuated the sensitizing effect of ethanol on LPS-induced liver damage. These data support the hypothesis that the sympathetic nervous system contributes, at least in part, to the mechanism of the sensitizing effect of ethanol. These results also suggest that sympathetic tone may contribute to the initiation and progression of alcoholic liver disease.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号