首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   761篇
  免费   90篇
  851篇
  2022年   5篇
  2021年   12篇
  2020年   7篇
  2019年   9篇
  2018年   11篇
  2017年   16篇
  2016年   16篇
  2015年   26篇
  2014年   25篇
  2013年   22篇
  2012年   34篇
  2011年   36篇
  2010年   27篇
  2009年   28篇
  2008年   47篇
  2007年   39篇
  2006年   32篇
  2005年   31篇
  2004年   37篇
  2003年   32篇
  2002年   27篇
  2001年   26篇
  2000年   26篇
  1999年   17篇
  1998年   5篇
  1997年   8篇
  1996年   18篇
  1995年   7篇
  1994年   13篇
  1993年   7篇
  1992年   16篇
  1991年   17篇
  1990年   12篇
  1989年   15篇
  1988年   8篇
  1987年   14篇
  1986年   6篇
  1985年   7篇
  1984年   12篇
  1983年   16篇
  1982年   4篇
  1981年   10篇
  1980年   7篇
  1978年   9篇
  1976年   7篇
  1974年   4篇
  1973年   8篇
  1969年   4篇
  1967年   5篇
  1966年   4篇
排序方式: 共有851条查询结果,搜索用时 15 毫秒
61.
Wolbachia pipientis are obligate endosymbionts that infect a wide range of insect and other arthropod species. They act as reproductive parasites by manipulating the host reproduction machinery to enhance their own transmission. This unusual phenotype is thought to be a consequence of the actions of secreted Wolbachia proteins that are likely to contain disulfide bonds to stabilize the protein structure. In bacteria, the introduction or isomerization of disulfide bonds in proteins is catalyzed by Dsb proteins. The Wolbachia genome encodes two proteins, α-DsbA1 and α-DsbA2, that might catalyze these steps. In this work we focussed on the 234 residue protein α-DsbA1; the gene was cloned and expressed in Escherichia coli, the protein was purified and its identity confirmed by mass spectrometry. The sequence identity of α-DsbA1 for both dithiol oxidants (E. coli DsbA, 12%) and disulfide isomerases (E. coli DsbC, 14%) is similar. We therefore sought to establish whether α-DsbA1 is an oxidant or an isomerase based on functional activity. The purified α-DsbA1 was active in an oxidoreductase assay but had little isomerase activity, indicating that α-DsbA1 is DsbA-like rather than DsbC-like. This work represents the first successful example of the characterization of a recombinant Wolbachia protein. Purified α-DsbA1 will now be used in further functional studies to identify protein substrates that could help explain the molecular basis for the unusual Wolbachia phenotypes, and in structural studies to explore its relationship to other disulfide oxidoreductase proteins.  相似文献   
62.
Positive modulators of AMPA receptors (AMPAr), also known as ampakines, are allosteric effectors of the receptors and have been extensively studied in past years due to their potential use as treatment for various diseases and ailments of the central nervous system such as mild cognitive impairment, schizophrenia, and Alzheimer's disease. Ampakines have been shown to improve performance on memory tasks in animals and in human subjects, an effect linked to their ability to increase agonist-mediated ion influx through AMPAr, thus leading to enhanced synaptic responses and facilitation of long-term potentiation (LTP) induction at glutamatergic synapses. As LTP is associated with calpain activation and spectrin degradation, we determined the effects of ampakine treatment of cultured hippocampal slices on spectrin degradation. Calpain activation was evaluated by determining the levels of the 145-150kDa degradation products of spectrin. Our data indicated that incubation of hippocampal slices with some, but not all positive modulators of AMPA receptors resulted in enhanced spectrin degradation, an effect that was blocked by a calpain inhibitor. In addition, an antagonist of AMPAr but not of NMDAr blocked ampakine-induced spectrin degradation. These results indicate that prolonged treatment with selected ampakines leads to spectrin degradation mediated by activation of the calcium-dependent protease calpain.  相似文献   
63.
64.
In the search of new strategies to fight against obesity, we targeted a gene pathway involved in energy uptake. We have thus investigated the APOB mRNA editing protein (APOBEC1) gene pathway that is involved in fat absorption in the intestine. The APOB gene encodes two proteins, APOB100 and APOB48, via the editing of a single nucleotide in the APOB mRNA by the APOBEC1 enzyme. The APOB48 protein is mandatory for the synthesis of chylomicrons by intestinal cells to transport dietary lipids and cholesterol. We produced transgenic rabbits expressing permanently and ubiquitously a small hairpin RNA targeting the rabbit APOBEC1 mRNA. These rabbits exhibited a moderately but significantly reduced level of APOBEC1 gene expression in the intestine, a reduced level of editing of the APOB mRNA, a reduced level of synthesis of chylomicrons after a food challenge, a reduced total mass of body lipids and finally presented a sustained lean phenotype without any obvious physiological disorder. Interestingly, no compensatory mechanism opposed to the phenotype. These lean transgenic rabbits were crossed with transgenic rabbits expressing in the intestine the human APOBEC1 gene. Double transgenic animals did not present any lean phenotype, thus proving that the intestinal expression of the human APOBEC1 transgene was able to counterbalance the reduction of the rabbit APOBEC1 gene expression. Thus, a moderate reduction of the APOBEC1 dependent editing induces a lean phenotype at least in the rabbit species. This suggests that the APOBEC1 gene might be a novel target for obesity treatment.  相似文献   
65.
The first highly efficient protocol is described for the electrotransfection of Propionibacterium freudenreichii with DNA phage. The transfection efficiency is 7 times 105 transfectants per μg of DNA under optimal conditions. Optimized parameters included the field strength (12.5 kV, 200 Ohms, 25 μF), phage DNA concentration (1 μg ml-1) and cell density (1.5 times 1010 cells ml-1). Growth in the presence of glycine and harvesting of cells during the early exponential growth phase increased the transfection efficiency. This electrotransfection protocol is of importance for the genetic improvement of dairy propionibacteria.  相似文献   
66.
Antiherpetic evaluation of five nonahydroxyterphenoyl-containing C-glycosidic ellagitannins, castalagin (1), vescalagin (2), grandinin (3), roburin B (5), and roburin D (7), was performed in cultured cells against four HSV-1 and HSV-2 strains, two of which were resistant to Acyclovir. All five ellagitannins displayed significant anti-HSV activities against the Acyclovir-resistant mutants, but the monomeric structures 1-3 were more active than the dimers 5 and 7. Vescalagin (2) stands out among the five congeners tested as the most potent and selective inhibitor, with an IC50 value in the subfemtomolar range and a selectivity index 5x10(5) times higher than that of Acyclovir. Molecular modeling was used to provide a rationale for the surprisingly lower activity profile of its epimer castalagin (1). These ellagitannins have promising potential as novel inhibitors in the search for non-nucleoside drugs active against Acyclovir-resistant herpes viruses.  相似文献   
67.
In vertebrates, little is known on the role of programmed cell death (PCD) occurring within the population of dividing neural precursors and newly formed neuroblasts during early neural development. During primary neurogenesis, PCD takes place within the neuroectoderm of Xenopus embryos in a reproducible stereotypic pattern, suggesting a role for PCD during the early development of the CNS. We find that the spatio-temporal pattern of PCD is unaffected in embryos in which cell proliferation has been blocked and whose neuroecotoderm contains half the normal number of cells. This shows that PCD is not dependent on cell division. It further suggests that PCD does not solely function to regulate absolute cell numbers within the neuroectoderm. We demonstrate that PCD can be reproducibly inhibited in vivo during primary neurogenesis by the overexpression of human Bcl-2. Following PCD inhibition, normal neurogenesis is disrupted, as seen by the expansion of the expression domains of XSox-2, XZicr-2, XNgnr-1, XMyT-1, and N-Tubulin, XNgnr-1 being the most affected. PCD inhibition, however, did not affect the outcome of lateral inhibition. We propose, then, that PCD regulates primary neurogenesis at the level of neuronal determination.  相似文献   
68.
69.
70.
Minichromosome maintenance proteins (MCMs) form a family of conserved molecules that are essential for initiation of DNA replication. All eukaryotes contain six orthologous MCM proteins that function as heteromultimeric complexes. The sequencing of the complete genomes of several archaebacteria has shown that MCM proteins are also present in archaea. The archaea Methanobacterium thermoautotrophicum contains a single MCM-related sequence. Here we report on the expression and purification of the recombinant M. thermoautotrophicum MCM protein (MtMCM) in both Escherichia coli and baculovirus-infected cells. We show that purified MtMCM protein assembles in large macromolecular complexes consistent in size with being double hexamers. We demonstrate that MtMCM contains helicase activity that preferentially uses dATP and DNA-dependent dATPase and ATPase activities. The intrinsic helicase activity of MtMCM is abolished when a conserved lysine in the helicase domain I/nucleotide binding site is mutated. MtMCM helicase unwinds DNA duplexes in a 3' --> 5' direction and can unwind up to 500 base pairs in vitro. The kinetics, processivity, and directionality of MtMCM support its role as a replicative helicase in M. thermoautotrophicum. This strongly suggests that this function is conserved for MCM proteins in eukaryotes where a replicative helicase has yet to be identified.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号