首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1001篇
  免费   46篇
  国内免费   1篇
  2024年   2篇
  2023年   4篇
  2022年   9篇
  2021年   34篇
  2020年   14篇
  2019年   28篇
  2018年   27篇
  2017年   31篇
  2016年   42篇
  2015年   46篇
  2014年   60篇
  2013年   70篇
  2012年   100篇
  2011年   85篇
  2010年   48篇
  2009年   40篇
  2008年   52篇
  2007年   65篇
  2006年   52篇
  2005年   34篇
  2004年   40篇
  2003年   37篇
  2002年   33篇
  2001年   11篇
  2000年   3篇
  1999年   7篇
  1998年   4篇
  1997年   5篇
  1996年   7篇
  1995年   5篇
  1994年   6篇
  1993年   8篇
  1992年   5篇
  1991年   4篇
  1990年   3篇
  1989年   2篇
  1987年   1篇
  1986年   3篇
  1985年   2篇
  1984年   3篇
  1983年   2篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1979年   2篇
  1976年   1篇
  1975年   2篇
  1972年   1篇
  1970年   1篇
  1968年   2篇
排序方式: 共有1048条查询结果,搜索用时 15 毫秒
41.
This study examined the effect of two natural toxins (a venom from the parasitic wasp Habrobracon hebetor and destruxin A from the entomopathogenic fungus Metarhizium anisopliae), and one pathogen (the entomopathogenic fungus Isaria fumosorosea) on the activity of basic digestive enzymes in the midgut of the cockroach Periplaneta americana. Simultaneously, the role of adipokinetic hormones (AKH) in the digestive processes was evaluated. The results showed that all tested toxins/pathogens elicited stress responses when applied into the cockroach body, as documented by an increase of AKH level in the central nervous system. The venom from H. hebetor showed no effect on digestive enzyme activities in the ceca and midgut in vitro. In addition, infection by I. fumosorosea caused a decrease in activity of all enzymes in the midgut and a variable decrease in activity in the ceca; application of AKHs did not reverse the inhibition. Destruxin A inhibited the activity of all enzymes in the midgut but none in the ceca in vitro; application of AKHs did reverse this inhibition, and no differences between both cockroach AKHs were found. Overall, the results demonstrated the variable effect of the tested toxins/pathogens on the digestive processes of cockroaches as well as the variable ability of AKH to counteract these effects.  相似文献   
42.
Oleuropein is one of the most abundant phenolic compounds found in olives. Epidemiological studies have indicated that an increasing intake of olive oil can significantly reduce the risk of breast cancer. However, the potential effect(s) of oleuropein on estrogen receptor (ER)-negative breast cancer is not fully understood. This study aims to understand the anticancer effects and underlying mechanism(s) of oleuropein on ER-negative breast cancer cells in vitro. The effect of oleuropein on the viability of breast cancer cell lines was examined by mitochondrial dye-uptake assay, apoptosis by flow cytometric analysis, nuclear factor-κB (NF-κB) activation by DNA binding/reporter assays and protein expression by Western blot analysis. In the present report, thiazolyl blue tetrazolium bromide assay results indicated that oleuropein inhibited the viability of breast cancer cells, and its effects were more pronounced on MDA-MB-231 as compared with MCF-7 cells. It was further found that oleuropein increased the level of reactive oxygen species and also significantly inhibited cellular migration and invasion. In addition, the activation of NF-κB was abrogated as demonstrated by Western blot analysis, NF-κB-DNA binding, and luciferase assays. Overall, the data indicates that oleuropein can induce substantial apoptosis via modulating NF-κB activation cascade in breast cancer cells.  相似文献   
43.
Spotted‐wing drosophila, Drosophila suzukii (Matsumura), is an invasive pest affecting fruit production in many regions of the world. Insecticides are the primary tactic for controlling D. suzukii in organic as well as conventional production systems. Organic growers have a greater challenge because fewer insecticides are approved for use in organic agriculture. The most effective organically approved product is spinosad, but alternatives are needed because of label restrictions limiting the number of applications per year, toxicity to beneficial arthropods and the risk of developing resistance. We evaluated several organically approved insecticides against D. suzukii in laboratory assays and field trials conducted on organic blueberry and raspberry farms. Spinosad was consistently the most effective insecticide, but a few other insecticides such as azadirachtin + pyrethrins, Chromobacterium subtsugae and sabadilla alkaloids showed moderate activity. None of the treatments had long residual activity. Mortality started to decline by 3 days after treatment, and by 5 days after application, the treatments were not different from the controls. These products may be useful in rotation programmes, necessary for reducing reliance on spinosad and mitigating resistance. Cultural and biological control approaches are needed in fruit production for D. suzukii management, but insecticides will likely continue to be the dominant management tactic while these other approaches are being optimized and adopted.  相似文献   
44.
Spotted‐wing drosophila, Drosophila suzukii Matsumura, is an invasive pest in the United States that causes considerable damage to fruit crops. It is responsible for many millions of dollars of revenue loss. The female D. suzukii has a heavily sclerotized ovipositor and can lay eggs in ripening or ripe fruit. The arrival of this invasive species has disrupted existing integrated pest management programmes, and growers rely on repeated insecticide applications to protect fruit. Organic growers have few chemical control options, and their reliance on spinosad increases the risk of developing insecticide resistance. We hypothesized that combining phagostimulants with insecticides would increase insecticide efficacy by prompting flies to spend more time in contact with residues. Therefore, the objective of this study was to evaluate the effectiveness of sucrose and the yeast Saccharomyces cerevisiae as phagostimulants in combination with organic biopesticides against D. suzukii in blueberries. Adding sucrose with or without yeast did not improve insecticide efficacy in terms of adult fly mortality or fruit infestation. Spinosad was very effective in all experiments, and for this product, there is little room for improvement. The phagostimulants had no effect on residual activity of any insecticide. The addition of sucrose with or without yeast did not improve the effectiveness of organic insecticides for D. suzukii. Concentrations of these phagostimulants in our experiments (0.36%) may have been too low to elicit a response. Further research is recommended to test different types and concentrations of phagostimulants.  相似文献   
45.
In comparison with the alpha subunit of G proteins, the role of the beta subunit in signaling is less well understood. During the regulation of effectors by the betagamma complex, it is known that the beta subunit contacts effectors directly, whereas the role of the beta subunit is undefined in receptor-G protein interaction. Among the five G protein beta subunits known, the beta(4) subunit type is the least studied. We compared the ability of betagamma complexes containing beta(4) and the well characterized beta(1) to stimulate three different effectors: phospholipase C-beta2, phospholipase C-beta3, and adenylyl cyclase type II. beta(4)gamma(2) and beta(1)gamma(2) activated all three of these effectors with equal efficacy. However, nucleotide exchange in a G protein constituting alpha(o)beta(4)gamma(2) was stimulated significantly more by the M2 muscarinic receptor compared with alpha(o)beta(1)gamma(2). Because alpha(o) forms heterotrimers with beta(4)gamma(2) and beta(1)gamma(2) equally well, these results show that the beta subunit type plays a direct role in the receptor activation of a G protein.  相似文献   
46.
The current models that have been proposed to explain the mechanism of replication termination are (i) passive arrest of a replication fork by the terminus (Ter) DNA-terminator protein complex that impedes the replication fork and the replicative helicase in a polar fashion and (ii) an active barrier model in which the Ter-terminator protein complex arrests a fork not only by DNA-protein interaction but also by mechanistically significant terminator protein-helicase interaction. Despite the existence of some evidence supporting in vitro interaction between the replication terminator protein (RTP) and DnaB helicase, there has been continuing debate in the literature questioning the validity of the protein-protein interaction model. The objective of the present work was two-fold: (i) to reexamine the question of RTP-DnaB interaction by additional techniques and different mutant forms of RTP, and (ii) to investigate if a common domain of RTP is involved in the arrest of both helicase and RNA polymerase. The results validate and confirm the RTP-DnaB interaction in vitro and suggest a critical role for this interaction in replication fork arrest. The results also show that the Tyr(33) residue of RTP plays a critical role both in the arrest of helicase and RNA polymerase.  相似文献   
47.
Dasgupta B  Pal L  Basu G  Chakrabarti P 《Proteins》2004,55(2):305-315
Like the beta-turns, which are characterized by a limiting distance between residues two positions apart (i, i+3), a distance criterion (involving residues at positions i and i+4) is used here to identify alpha-turns from a database of known protein structures. At least 15 classes of alpha-turns have been enumerated based on the location in the phi,psi space of the three central residues (i+1 to i+3)-one of the major being the class AAA, where the residues occupy the conventional helical backbone torsion angles. However, moving towards the C-terminal end of the turn, there is a shift in the phi,psi angles towards more negative phi, such that the electrostatic repulsion between two consecutive carbonyl oxygen atoms is reduced. Except for the last position (i+4), there is not much similarity in residue composition at different positions of hydrogen and non-hydrogen bonded AAA turns. The presence or absence of Pro at i+1 position of alpha- and beta-turns has a bearing on whether the turn is hydrogen-bonded or without a hydrogen bond. In the tertiary structure, alpha-turns are more likely to be found in beta-hairpin loops. The residue composition at the beginning of the hydrogen bonded AAA alpha-turn has similarity with type I beta-turn and N-terminal positions of helices, but the last position matches with the C-terminal capping position of helices, suggesting that the existence of a "helix cap signal" at i+4 position prevents alpha-turns from growing into helices. Our results also provide new insights into alpha-helix nucleation and folding.  相似文献   
48.
Atypical protein kinase C (aPKC) isoforms have been suggested to mediate insulin effects on glucose transport in adipocytes and other cells. To more rigorously test this hypothesis, we generated mouse embryonic stem (ES) cells and ES-derived adipocytes in which both aPKC-lambda alleles were knocked out by recombinant methods. Insulin activated PKC-lambda and stimulated glucose transport in wild-type (WT) PKC-lambda(+/+), but not in knockout PKC-lambda(-/-), ES cells. However, insulin-stimulated glucose transport was rescued by expression of WT PKC-lambda in PKC-lambda(-/-) ES cells. Surprisingly, insulin-induced increases in both PKC-lambda activity and glucose transport were dependent on activation of proline-rich tyrosine protein kinase 2, the ERK pathway, and phospholipase D (PLD) but were independent of phosphatidylinositol 3-kinase (PI3K) in PKC-lambda(+/+) ES cells. Interestingly, this dependency was completely reversed after differentiation of ES cells to adipocytes, i.e. insulin effects on PKC-lambda and glucose transport were dependent on PI3K, rather than proline-rich tyrosine protein kinase 2/ERK/PLD. As in ES cells, insulin effects on glucose transport were absent in PKC-lambda(-/-) adipocytes but were rescued by expression of WT PKC-lambda in these adipocytes. Our findings suggest that insulin activates aPKCs and glucose transport in ES cells by a newly recognized PI3K-independent ERK/PLD-dependent pathway and provide a compelling line of evidence suggesting that aPKCs are required for insulin-stimulated glucose transport, regardless of whether aPKCs are activated by PI3K-dependent or PI3K-independent mechanisms.  相似文献   
49.
Xiang P  Haas EJ  Zeece MG  Markwell J  Sarath G 《Planta》2004,220(1):56-63
Gly m Bd 28 K is a major soybean (Glycine max Merr.) glycoprotein allergen. It was originally identified as a 28 kDa polypeptide in soybean seed flour. However, the full-length protein is encoded by an open reading frame (ORF) of 473 amino acids, and contains a 23 kDa C-terminal polypeptide of as yet unknown allergenic and structural characteristics. IgE-binding (allergenic potential) of the Gly m Bd 28 K protein including the 23 kDa C-terminal portion as well as shorter fragments derived from the full-length ORF were evaluated using sera from soy-sensitive adults. All of these sera contained IgE that efficiently recognized the C-terminal region. Epitope mapping demonstrated that a dominant linear C-terminal IgE binding epitope resides between residues S256 and A270. Alanine scanning of this dominant epitope indicated that five amino acids, Y260, D261, D262, K264 and D266, contribute most towards IgE-binding. A model based on the structure of the subunit of soybean -conglycinin revealed that Gly m Bd 28 K contains two cupin domains. The dominant epitope is on the edge of the first -sheet of the C-terminal cupin domain and is present on a potentially solvent-accessible loop connecting the two cupin domains. Thus, the C-terminal 23 kDa polypeptide of Gly m Bd 28 K present in soy products is allergenic and apparently contains at least one immunodominant epitope near the edge of a cupin domain. This knowledge could be helpful in the future breeding of hypoallergenic soybeans.Abbreviations Ara h 1 Arachis hypogaea allergen 1 - Ara h 3 Arachis hypogaea allergen 3 - BCA Bicinchoninic acid - Gly m Bd 28 K Glycine max band 28 kDa allergen - Gly m Bd 30 K Glycine max band 30 kDa allergen - Gly m Bd 68 K Glycine max band 68 kDa allergen - IgE Immunoglobulin E  相似文献   
50.
Leelapon O  Sarath G  Staswick PE 《Planta》2004,219(6):1071-1079
Soybean [Glycine max (L.) Merr.] contains two proteins called vegetative storage proteins (VSPs) that function as temporary storage reserves, but are also closely related to plant acid phosphatases of the haloacid dehalogenase (HAD) superfamily. This study examined the biochemical basis for the relatively low catalytic activity previously reported for these VSPs. The specific activity of purified recombinant VSP on GMP was about 40-fold lower than for a related soybean root nodule acid phosphatase (APase), which had a specific activity of 845 U mg–1 protein. Conversion of Ser106 to Asp increased VSP activity about 20-fold. This Asp residue is present in nodule APase and is a highly conserved nucleophile in the HAD superfamily. Related VSPs from cultivated soybean and from three wild perennial soybeans, as well as a pod storage protein (PSP) from Phaseolus vulgaris L. all lack the catalytic Asp, suggesting they too are catalytically inefficient. Phylogenetic analysis showed the VSPs and PSP are more closely related to each other than to 21 other VSP-like proteins from several plant species, all of which have the nucleophilic Asp. This study suggests that loss of catalytic activity may be a requirement for the VSPs and PSP to function as storage proteins in legumes.Abbreviations APase Acid phosphatase - GST Glutathione S-transferase - HAD Haloacid dehalogenase - pNPP Para-nitrophenol phosphate - PSP Pod storage protein - RIP Ribosome inactivating protein - VSP Vegetative storage protein Accession numbers for the VSP sequences reported in this paper are from G. falcata, AY523602; G. tomentella, AY523603; G. curvata, AY523604  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号