首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   814篇
  免费   63篇
  877篇
  2024年   2篇
  2023年   13篇
  2022年   33篇
  2021年   40篇
  2020年   20篇
  2019年   30篇
  2018年   21篇
  2017年   28篇
  2016年   35篇
  2015年   54篇
  2014年   76篇
  2013年   65篇
  2012年   81篇
  2011年   67篇
  2010年   46篇
  2009年   39篇
  2008年   42篇
  2007年   35篇
  2006年   21篇
  2005年   17篇
  2004年   13篇
  2003年   20篇
  2002年   15篇
  2001年   10篇
  2000年   9篇
  1999年   6篇
  1998年   5篇
  1997年   3篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1991年   6篇
  1989年   2篇
  1988年   5篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1977年   1篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1966年   1篇
排序方式: 共有877条查询结果,搜索用时 15 毫秒
141.
142.

Background  

Malaria parasite secretes various proteins in infected RBC for its growth and survival. Thus identification of these secretory proteins is important for developing vaccine/drug against malaria. The existing motif-based methods have got limited success due to lack of universal motif in all secretory proteins of malaria parasite.  相似文献   
143.
IFITM3 inhibits influenza A virus infection by preventing cytosolic entry   总被引:2,自引:0,他引:2  
To replicate, viruses must gain access to the host cell's resources. Interferon (IFN) regulates the actions of a large complement of interferon effector genes (IEGs) that prevent viral replication. The interferon inducible transmembrane protein family members, IFITM1, 2 and 3, are IEGs required for inhibition of influenza A virus, dengue virus, and West Nile virus replication in vitro. Here we report that IFN prevents emergence of viral genomes from the endosomal pathway, and that IFITM3 is both necessary and sufficient for this function. Notably, viral pseudoparticles were inhibited from transferring their contents into the host cell cytosol by IFN, and IFITM3 was required and sufficient for this action. We further demonstrate that IFN expands Rab7 and LAMP1-containing structures, and that IFITM3 overexpression is sufficient for this phenotype. Moreover, IFITM3 partially resides in late endosomal and lysosomal structures, placing it in the path of invading viruses. Collectively our data are consistent with the prediction that viruses that fuse in the late endosomes or lysosomes are vulnerable to IFITM3's actions, while viruses that enter at the cell surface or in the early endosomes may avoid inhibition. Multiple viruses enter host cells through the late endocytic pathway, and many of these invaders are attenuated by IFN. Therefore these findings are likely to have significance for the intrinsic immune system's neutralization of a diverse array of threats.  相似文献   
144.
Searching for genetic variants with unusual differentiation between subpopulations is an established approach for identifying signals of natural selection. However, existing methods generally require discrete subpopulations. We introduce a method that infers selection using principal components (PCs) by identifying variants whose differentiation along top PCs is significantly greater than the null distribution of genetic drift. To enable the application of this method to large datasets, we developed the FastPCA software, which employs recent advances in random matrix theory to accurately approximate top PCs while reducing time and memory cost from quadratic to linear in the number of individuals, a computational improvement of many orders of magnitude. We apply FastPCA to a cohort of 54,734 European Americans, identifying 5 distinct subpopulations spanning the top 4 PCs. Using the PC-based test for natural selection, we replicate previously known selected loci and identify three new genome-wide significant signals of selection, including selection in Europeans at ADH1B. The coding variant rs1229984T has previously been associated to a decreased risk of alcoholism and shown to be under selection in East Asians; we show that it is a rare example of independent evolution on two continents. We also detect selection signals at IGFBP3 and IGH, which have also previously been associated to human disease.  相似文献   
145.
Uracil DNA glycosylase (Ung (or UDG)) initiates the excision repair of an unusual base, uracil, in DNA. Ung is a highly conserved protein found in all organisms. Paradoxically, loss of this evolutionarily conserved enzyme has not been seen to result in severe growth phenotypes in the cellular life forms. In this study, we chose G+C-rich genome containing bacteria (Pseudomonas aeruginosa and Mycobacterium smegmatis) as model organisms to investigate the biological significance of ung. Ung deficiency was created either by expression of a highly specific inhibitor protein, Ugi, and/or by targeted disruption of the ung gene. We show that abrogation of Ung activity in P. aeruginosa and M. smegmatis confers upon them an increased mutator phenotype and sensitivity to reactive nitrogen intermediates generated by acidified nitrite. Also, in a mouse macrophage infection model, P. aeruginosa (Ung-) shows a significant decrease in its survival. Infections of the macrophages with M. smegmatis show an initial increase in the bacterial counts that remain for up to 48 h before a decline. Interestingly, abrogation of Ung activity in M. smegmatis results in nearly a total abolition of their multiplication and a much-decreased residency in macrophages stimulated with interferon gamma. These observations suggest Ung as a useful target to control growth of G+C-rich bacteria.  相似文献   
146.
Mutants of initiator tRNA that function both as initiators and elongators   总被引:13,自引:0,他引:13  
We describe the effect of mutations in the acceptor stem of Escherichia coli initiator tRNA on its function in vivo. The acceptor stem mutations were coupled to mutations in the anticodon sequence from CAU----CUA to allow functional studies on the mutant tRNAs in initiation and in elongation in vivo. We show that, with one exception, there is a good correlation between the kinetic parameters for formylation of the mutant tRNAs in vitro (preceding paper, Lee, C.P., Seong, B. L., and RajBhandary, U.L. (1991) J. Biol. Chem. 266, 18012-18017) and their activity in initiation in vivo. These results suggest an important role for formylation of initiator tRNA in its function in initiation, at least when it is aminoacylated with glutamine as is the case with the mutant tRNAs used here. Mutant tRNAs that have a base pair between nucleotides 1 and 72 at the top of the acceptor stem function as elongators, as analyzed by their ability to suppress an amber mutation in the E. coli beta-galactosidase gene. One of these mutants is also quite active in initiation. Thus, activities of a tRNA in initiation and elongation steps of protein synthesis are not mutually exclusive. Using a mRNA with two in frame UAG codons, we show that this mutant tRNA can both initiate protein synthesis from the upstream UAG and suppress the down-stream UAG. We discuss the potential use of tRNAs with such "dual" functions in tightly regulated expression of genes for proteins in E. coli.  相似文献   
147.
Heat is a major environmental stress factor that confines growth, productivity, and metabolism of plants. Plants respond to such unfavorable conditions through changes in their physiological, biochemical and developmental processes. Withania somnifera, an important medicinal plant, grows in hot and dry conditions, however, molecular mechanisms related to such adaptive properties are not known. Here, we elucidated that members of the sterol glycosyltransferases (SGT) gene family play important roles in the survival of W. somnifera under adverse conditions through maintaining the integrity of the membrane. SGTs are enzymes involved in sterol modifications and participate in metabolic flexibility during stress. Silencing of WsSGT members, for instance WsSGTL1, WsSGTL2 and WsSGTL4, was inimical for important physiological parameters, such as electron transport rate, photochemical quantum yield, acceptor side limitation, non‐photochemical quenching (NPQ), Fv/Fm and net photosynthetic rate, whereas stomatal conductance, transpiration rate and dark respiration rates (Rds) were increased. Decreased NPQ and increased Rds helped to generate significant amount of ROS in the Wsamisgt lines. After heat stress, H2O2, lipid peroxidation and nitric oxide production increased in the Wsamisgt lines due to high ROS generation. The expression of HSPs in Wsamisgt lines might be involved in regulation of physiological processes during stress. We have also observed increased proline accumulation which might be involved in restricting water loss in the Wsamisgt lines. Taken together, our observations revealed that SGTL enzyme activity is required to maintain the internal damages of the cell against high temperature by maintaining the sterol vs sterol glycosides ratio in the membranes of W. somnifera.  相似文献   
148.
Quantifying the magnitude and dynamics of protein oxidation during cell signaling is technically challenging. Computational modeling provides tractable, quantitative methods to test hypotheses of redox mechanisms that may be simultaneously operative during signal transduction. The interleukin-4 (IL-4) pathway, which has previously been reported to induce reactive oxygen species and oxidation of PTP1B, may be controlled by several other putative mechanisms of redox regulation; widespread proteomic thiol oxidation observed via 2D redox differential gel electrophoresis upon IL-4 treatment suggests more than one redox-sensitive protein implicated in this pathway. Through computational modeling and a model selection strategy that relied on characteristic STAT6 phosphorylation dynamics of IL-4 signaling, we identified reversible protein tyrosine phosphatase (PTP) oxidation as the primary redox regulatory mechanism in the pathway. A systems-level model of IL-4 signaling was developed that integrates synchronous pan-PTP oxidation with ROS-independent mechanisms. The model quantitatively predicts the dynamics of IL-4 signaling over a broad range of new redox conditions, offers novel hypotheses about regulation of JAK/STAT signaling, and provides a framework for interrogating putative mechanisms involving receptor-initiated oxidation.  相似文献   
149.
150.
The cervical mucus plug (CMP) differs from the cervical secretions of non-pregnant women, and is the ultimate sealant of the uterine cavity during pregnancy. Although several studies have analyzed biochemical properties of large glycoproteins in the CMP, comprehensive information about its protein composition is yet unavailable. We hypothesized that protein profiling of the CMP could provide key clues to its physiological functions in pregnancy. For this purpose, five CMPs obtained from women in labor at term were analyzed by LC-MS/MS. Out of 291 total proteins identified, 137 were detected in two or more samples, which included S100A8, S100A9, and complement proteins (C3, C4a, C4b, C6, and C8g). Several proteins, which have not been described in the cervical mucus of non-pregnant women or in cervicovaginal fluids, such as CD81 antigen and pregnancy zone protein, were also identified. Gene ontology analysis of identified proteins showed significant enrichment of 28 biological processes such as 'activation of plasma proteins involved in acute inflammatory response' and 'positive regulation of cholesterol esterification'. We report the proteome of CMPs from pregnant women at term for the first time, and the overall findings strongly suggest an important role for the CMP in the maintenance of pregnancy and parturition.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号