首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   473篇
  免费   36篇
  2023年   8篇
  2022年   23篇
  2021年   25篇
  2020年   11篇
  2019年   16篇
  2018年   16篇
  2017年   22篇
  2016年   24篇
  2015年   35篇
  2014年   47篇
  2013年   46篇
  2012年   56篇
  2011年   45篇
  2010年   28篇
  2009年   24篇
  2008年   28篇
  2007年   21篇
  2006年   10篇
  2005年   8篇
  2004年   2篇
  2003年   8篇
  2002年   5篇
  1977年   1篇
排序方式: 共有509条查询结果,搜索用时 15 毫秒
71.
Evolutionary dynamics at the population level play a central role in creating the diversity of life on our planet. In this study, we sought to understand the origins of such population-level variation in mating systems and defensive acylsugar chemistry in Solanum habrochaites—a wild tomato species found in diverse Andean habitats in Ecuador and Peru. Using Restriction-site-Associated-DNA-Sequencing (RAD-seq) of 50 S. habrochaites accessions, we identified eight population clusters generated via isolation and hybridization dynamics of 4–6 ancestral populations. Detailed characterization of mating systems of these clusters revealed emergence of multiple self-compatible (SC) groups from progenitor self-incompatible populations in the northern part of the species range. Emergence of these SC groups was also associated with fixation of deleterious alleles inactivating acylsugar acetylation. The Amotape-Huancabamba Zone—a geographical landmark in the Andes with high endemism and isolated microhabitats—was identified as a major driver of differentiation in the northern species range, whereas large geographical distances contributed to population structure and evolution of a novel SC group in the central and southern parts of the range, where the species was also inferred to have originated. Findings presented here highlight the role of the diverse ecogeography of Peru and Ecuador in generating population differentiation, and enhance our understanding of the microevolutionary processes that create biological diversity.  相似文献   
72.
73.
In inter-laboratory studies, a fundamental problem of interest is inference concerning the consensus mean, when the measurements are made by several laboratories which may exhibit different within-laboratory variances, apart from the between laboratory variability. A heteroscedastic one-way random model is very often used to model this scenario. Under such a model, a modified signed log-likelihood ratio procedure is developed for the interval estimation of the common mean. Furthermore, simulation results are presented to show the accuracy of the proposed confidence interval, especially for small samples. The results are illustrated using an example on the determination of selenium in non-fat milk powder by combining the results of four methods. Here, the sample size is small, and the confidence limits for the common mean obtained by different methods produce very different results. The confidence interval based on the modified signed log-likelihood ratio procedure appears to be quite satisfactory.  相似文献   
74.
Anterior leaflet (AL) stiffening during isovolumic contraction (IVC) may aid mitral valve closure. We tested the hypothesis that AL stiffening requires atrial depolarization. Ten sheep had radioopaque-marker arrays implanted in the left ventricle, mitral annulus, AL, and papillary muscle tips. Four-dimensional marker coordinates (x, y, z, and t) were obtained from biplane videofluoroscopy at baseline (control, CTRL) and during basal interventricular-septal pacing (no atrial contraction, NAC; 110-117 beats/min) to generate ventricular depolarization not preceded by atrial depolarization. Circumferential and radial stiffness values, reflecting force generation in three leaflet regions (annular, belly, and free-edge), were obtained from finite-element analysis of AL displacements in response to transleaflet pressure changes during both IVC and isovolumic relaxation (IVR). In CTRL, IVC circumferential and radial stiffness was 46 ± 6% greater than IVR stiffness in all regions (P < 0.001). In NAC, AL annular IVC stiffness decreased by 25% (P = 0.004) in the circumferential and 31% (P = 0.005) in the radial directions relative to CTRL, without affecting edge stiffness. Thus AL annular stiffening during IVC was abolished when atrial depolarization did not precede ventricular systole, in support of the hypothesis. The likely mechanism underlying AL annular stiffening during IVC is contraction of cardiac muscle that extends into the leaflet and requires atrial excitation. The AL edge has no cardiac muscle, and thus IVC AL edge stiffness was not affected by loss of atrial depolarization. These findings suggest one reason why heart block, atrial dysrhythmias, or ventricular pacing may be accompanied by mitral regurgitation or may worsen regurgitation when already present.  相似文献   
75.
The anterior mitral leaflet (AML) is a thin membrane that withstands high left ventricular (LV) pressure pulses 100,000 times per day. The presence of contractile cells determines AML in vivo stiffness and complex geometry. Until recently, mitral valve finite element (FE) models have neglected both of these aspects. In this study we assess their effect on AML strains and stresses, hypothesizing that these will differ significantly from those reported in literature. Radiopaque markers were sewn on the LV, the mitral annulus, and AML in sheep hearts, and their four-dimensional coordinates obtained with biplane video fluoroscopy. Employing in vivo data from three representative hearts, AML FE models were created from the marker coordinates at the end of isovolumic relaxation assumed as the unloaded reference state. AML function was simulated backward through systole, applying the measured trans-mitral pressure on AML LV surface and marker displacements on AML boundaries. Simulated AML displacements and curvatures were consistent with in vivo measurements, confirming model accuracy. AML circumferential strains were mostly tensile (1-3%), despite being compressive (-1%) near the commissures. Radial strains were compressive in the belly (-1 to -0.2%), and tensile (2-8%) near the free edge. These results differ significantly from those of previous FE models. They reflect the synergy of high tissue stiffness, which limits tensile circumferential strains, and initial compound curvature, which forces LV pressure to compress AML radially. The obtained AML shape may play a role not only in preventing mitral regurgitation, but also in optimizing LV outflow fluid dynamics.  相似文献   
76.
Extracts from marine sources exhibit antimicrobial and antioxidant properties in vitro and there has been great interest within the food industry to move towards natural methods of food preservation. Natural extracts from seaweeds could potentially have a multiple functionality within the food industry to increase safety and enhance the quality of food products. The present study is aimed to assess the antimicrobial activity of a hydrophilic extract from the fucoid brown alga Himanthalia elongata in model food systems. Carbohydrate and protein model food systems (CMFS and PMFS, respectively) were studied at varying concentrations (1 %, 5 % and 10 %) and bacterial inhibition of the extract was investigated against Salmonella abony and Listeria monocytogenes. The extract provided up to 100 % inhibition of the bacteria with a bactericidal effect in CMFS, while a bacteriostatic effect was seen in PMFS. In general, there was a significant difference (P?<?0.05) between the efficacies of the extract against S. abony as compared to L. monocytogenes with higher inhibition for S. abony. In terms of antioxidants; the extract had a total phenolic content of 34.0 mg GAE g?1 of extract and a DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging activity of 139.8 mg AAE g of extract. The results of the present study are promising as it provides an insight for the inclusion of seaweed extracts into real food systems.  相似文献   
77.
Homologous non-coding RNAs frequently exhibit domain insertions, where a branch of secondary structure is inserted in a sequence with respect to its homologs. Dynamic programming algorithms for common secondary structure prediction of multiple RNA homologs, however, do not account for these domain insertions. This paper introduces a novel dynamic programming algorithm methodology that explicitly accounts for the possibility of inserted domains when predicting common RNA secondary structures. The algorithm is implemented as Dynalign II, an update to the Dynalign software package for predicting the common secondary structure of two RNA homologs. This update is accomplished with negligible increase in computational cost. Benchmarks on ncRNA families with domain insertions validate the method. Over base pairs occurring in inserted domains, Dynalign II improves accuracy over Dynalign, attaining 80.8% sensitivity (compared with 14.4% for Dynalign) and 91.4% positive predictive value (PPV) for tRNA; 66.5% sensitivity (compared with 38.9% for Dynalign) and 57.0% PPV for RNase P RNA; and 50.1% sensitivity (compared with 24.3% for Dynalign) and 58.5% PPV for SRP RNA. Compared with Dynalign, Dynalign II also exhibits statistically significant improvements in overall sensitivity and PPV. Dynalign II is available as a component of RNAstructure, which can be downloaded from http://rna.urmc.rochester.edu/RNAstructure.html.  相似文献   
78.

Background

The alteration in the epigenome forms an interface between the genotype and the environment. Epigenetic alteration is expected to make a significant contribution to the development of cardiovascular disease where environmental interactions play a key role in disease progression. We had previously shown that global DNA hypermethylation per se is associated with coronary artery disease (CAD) and is further accentuated by high levels of homocysteine, a thiol amino acid which is an independent risk factor for cardiovascular disease and is also a key modulator of macromolecular methylation.

Results

We have identified 72 differentially methylated regions (DMRs) that were hypermethylated in CAD patients in the background of varying homocysteine levels. Following deep bisulfite sequencing of a few of the selected DMRs, we found significantly higher methylation in CAD cases. We get six CpG sites in three DMRs that included the intronic region of C1QL4 gene and upstream region of CCDC47 and TGFBR3 genes.

Conclusion

To the best of our knowledge, this is the first study to identify hypermethylated regions across the genome in patients with coronary artery disease. Further validation in different populations is necessary for this information to be used for disease risk assessment and management.  相似文献   
79.
Proton metabolic profiling of incisional biopsied cervical lymph node tissue specimens of 109 patients suffering from tubercular (CTBL) and non-specific (NSCLA) lymphadenitis were analyzed by high resolution magic angle spinning (HR-MAS) NMR spectroscopy. In the present study, 40 endogenous metabolites namely, myo-inositol (m-Ins), branched chain amino acids (BCAA), glutamate, serine, taurine (Tau) aromatic amino acids, choline (Cho) containing compounds and glucose were characterized. To the best of our knowledge, this is the first report on metabolic profiling of cervical tubercular lymph node tissues using HR-MAS NMR spectroscopy. The principal component analysis revealed a clear discrimination between CTBL and NSCLA tissues. Increase in the concentration of mobile poly unsaturated fatty acids, BCAA, Cho, Tau, glycine and a decrease in the concentration of lactate, phosphocholine and m-Ins was observed in CTBL cases. The partial least square discriminant analysis (PLS-DA) with R 2 = 0.95 and Q 2 = 0.92 provided >98 % of correct classification between the two groups. A PLS-DA training set model of 75 % (CTBL = 54, NSCLA = 27) of the subjects when subjected for prediction of 25 % cases (CTBL = 18, NSCLA = 10) as an unknown dataset provided more than 98 % of diagnostic accuracy in their respective histological categories. The receiver operator characteristic curve was generated from PLS-DA factor-1 projected an area under the curve of 0.962. The metabolic profile obtained from HR-MAS NMR spectroscopy may be used as surrogate markers in vivo MRS for differentiating between CTBL and NSCLA cases non-invasively.  相似文献   
80.

Background

A live oral cholera vaccine VA 1.4 developed from a non-toxigenic Vibrio cholerae O1 El Tor strain using ctxB gene insertion was further developed into a clinical product following cGMP and was evaluated in a double-blind randomized placebo controlled parallel group two arm trial with allocation ratio of 1∶1 for safety and immunogenicity in men and women aged 18–60 years from Kolkata, India.

Method

A lyophilized dose of 1.9×109 CFU (n = 44) or a placebo (n = 43) reconstituted with a diluent was administered within 5 minutes of drinking 100 ml of a buffer solution made of sodium bicarbonate and ascorbic acid and a second dose on day 14.

Result

The vaccine did not elicit any diarrhea related adverse events. Other adverse events were rare, mild and similar in two groups. One subject in the vaccine group excreted the vaccine strain on the second day after first dose. The proportion of participants who seroconverted (i.e. had 4-folds or higher rise in reciprocal titre) in the vaccine group were 65.9% (95% CI: 50.1%–79.5%) at both 7 days (i.e. after 1st dose) and 21 days (i.e. after 2nd dose). None of the placebo recipients seroconverted. Anti-cholera toxin antibody was detected in very few recipients of the vaccine.

Conclusion

This study demonstrates that VA 1.4 at a single dose of 1.9×109 is safe and immunogenic in adults from a cholera endemic region. No additional benefit after two doses was seen.

Trial Registration

Clinical Trials Registry-India, National Institute of Medical Statistics (Indian Council of Medical Research) CTRI/2012/04/002582  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号