首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   156篇
  免费   5篇
  国内免费   1篇
  2022年   2篇
  2021年   4篇
  2016年   2篇
  2015年   5篇
  2014年   1篇
  2013年   8篇
  2012年   4篇
  2011年   7篇
  2010年   2篇
  2009年   4篇
  2008年   8篇
  2007年   10篇
  2006年   7篇
  2005年   3篇
  2004年   10篇
  2003年   5篇
  2002年   7篇
  2001年   5篇
  2000年   1篇
  1999年   8篇
  1998年   4篇
  1996年   2篇
  1995年   3篇
  1994年   1篇
  1993年   3篇
  1992年   2篇
  1991年   2篇
  1990年   2篇
  1988年   4篇
  1987年   1篇
  1986年   1篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1981年   3篇
  1980年   2篇
  1978年   3篇
  1977年   1篇
  1976年   2篇
  1975年   1篇
  1973年   2篇
  1972年   4篇
  1969年   2篇
  1968年   1篇
  1967年   1篇
  1966年   2篇
  1965年   4篇
  1964年   1篇
  1963年   1篇
排序方式: 共有162条查询结果,搜索用时 62 毫秒
11.
Natural genetic transformation is widely distributed in bacteria and generally occurs during a genetically programmed differentiated state called competence. This process promotes genome plasticity and adaptability in Gram-negative and Gram-positive bacteria. Transformation requires the binding and internalization of exogenous DNA, the mechanisms of which are unclear. Here, we report the discovery of a transformation pilus at the surface of competent Streptococcus pneumoniae cells. This Type IV-like pilus, which is primarily composed of the ComGC pilin, is required for transformation. We provide evidence that it directly binds DNA and propose that the transformation pilus is the primary DNA receptor on the bacterial cell during transformation in S. pneumoniae. Being a central component of the transformation apparatus, the transformation pilus enables S. pneumoniae, a major Gram-positive human pathogen, to acquire resistance to antibiotics and to escape vaccines through the binding and incorporation of new genetic material.  相似文献   
12.
Summary

The larval development of the ophiocomid ophiuroid Ophiomastix venosais described using SEM. The gastrula transforms into a uniformly ciliated early larva which progressively changes into a lecithotrophic late premetamorphic larva with a continuous bilateral ciliated band. This stage is short-lived and equivalent to a highly reduced ophiopluteus. Comparisons between O. venosa and other ophiuroid species whose development has been investigated suggest that, whatever the developmental mode (lecithotrophic or planktotrophic), a pluteus stage always occurs in ophiuroids with planktonic development. Two metamorphic stages were identified, the late metamorphic larva differing from the early one by the closure of the larval mouth. The appearance of the permanent mouth marks the end of the metamorphosis. The postlarva still possesses remnants of larval features. The transformation of the reduced ophiopluteus into a barrel-shaped metamorphic larva with transverse ciliated bands, a vitellaria larva, is followed. The possible occurrence of a unique type of metamorphic larva in non-brooding ophiuroids is discussed. Verification of this, however, needs further SEM investigations on metamorphic larva from species having “regular” planktotrophic development.  相似文献   
13.
Crude venom from two elapid snakes Pseudechis australis and Pseudechis butleri was fractionated by gel filtration chromatography and selected fractions screened for in vitro insulin-releasing activity using clonal pancreatic BRIN-BD11 cells. Following acute 20-min incubation at 5.6 mM glucose, 9 fractions exhibited significant (P < 0.001) insulin-releasing activity. Structural characterisation of active fractions was achieved primarily using MALDI–TOF MS and N-terminal Edman degradation sequencing. The partial N-terminal sequences are reported for a total of 7 venom components. Their homology to existing sequences as determined using BLAST searching uncovered the main insulin-releasing families as being phospholipases A2 and short α-neurotoxins. A number of sequences are reported for the first time from P. butleri venom which is much less studied than the related P. australis.  相似文献   
14.
15.
16.
Glucose-dependent insulinotropic polypeptide (GIP) is an incretin hormone secreted by endocrine K-cells in response to nutrient absorption. In this study we have utilized a specific and enzymatically stable GIP receptor antagonist, (Pro3)GIP, to evaluate the contribution of endogenous GIP to insulin secretion and glucose homeostasis in mice. Daily injection of (Pro3)GIP (25 nmol/kg body weight) for 11 days had no effect on food intake or body weight. Non-fasting plasma glucose concentrations were significantly raised (p<0.05) by day 11, while plasma insulin concentrations were not significantly different from saline treated controls. After 11 days, intraperitoneal glucose tolerance was significantly impaired in the (Pro3)GIP treated mice compared to control (p<0.01). Glucose-mediated insulin secretion was not significantly different between the two groups. Insulin sensitivity of 11-day (Pro3)GIP treated mice was slightly impaired 60 min post injection compared with controls. Following a 15 min refeeding period in 18 h fasted mice, food intake was not significantly different in (Pro3)GIP treated mice and controls. However, (Pro3)GIP treated mice displayed significantly elevated plasma glucose levels 30 and 60 min post feeding (p<0.05, in both cases). Postprandial insulin secretion was not significantly different and no changes in pancreatic insulin content or islet morphology were observed in (Pro3)GIP treated mice. The observed biological effects of (Pro3)GIP were reversed following cessation of treatment for 9 days. These data indicate that ablation of GIP signaling causes a readily reversible glucose intolerance without appreciable change of insulin secretion.  相似文献   
17.
Shortening of telomeres, specific nucleotide repeats that cap eukaryotic chromosomes, is thought to play an important role in cellular and organismal senescence. We examined telomere dynamics in two long-lived seabirds, the European shag and the wandering albatross. Telomere length in blood cells declines between the chick stage and adulthood in both species. However, among adults, telomere length is not related to age. This is consistent with reports of most telomere loss occurring early in life in other vertebrates. Thus, caution must be used in estimating annual rates of telomere loss, as these are probably not constant with age. We also measured changes within individuals in the wild, using repeat samples taken from individual shags as chicks and adults. We found high inter-individual variation in the magnitude of telomere loss, much of which was explained by circumstances during growth. Individuals laying down high tissue mass for their size showed greater telomere shortening. Independently of this, individuals born late in the season showed more telomere loss. Early conditions, possibly through their effects on oxidative stress, appear to play an important role in telomere attrition and thus potentially in the longevity of individuals.  相似文献   
18.
Skin fibrosis is characterized by the proliferation and accumulation of activated fibroblasts called myofibroblasts. They exhibit specific cytoskeletal differentiation, overexpress the fibrogenic cytokine TGF-beta1, synthesize excess extracellular matrix compounds and exhibit a depleted antioxidant metabolism. Recently, SOD was successfully used as an antifibrotic agent in vivo, thus challenging the postulate of established fibrosis irreversibility. We postulated that myofibroblasts could be a direct target for this therapeutic effect. To test this hypothesis, we used three-dimensional co-culture models of skin, in which specific phenotypes of normal fibroblasts versus myofibroblasts are retained. These 3-D models were treated with liposomal and carrier-free Cu/Zn SOD, and examined for their effects on cell number, cell death, and phenotypic differentiation. The results show that SOD did not induce myofibroblast cell death, whereas it significantly reduced TGF-beta1 expression, thus demonstrating that SOD might be proposed as a potent antagonist of this major fibrogenic growth factor. We also found that SOD significantly lowered the levels of the myofibroblast marker alpha-sm actin, of beta-actin, and of the extracellular matrix components alpha1(I) collagen and tenascin-C. In conclusion, our results suggest that SOD antifibrotic action occurred in vitro through the reversion of myofibroblasts into normal fibroblasts.  相似文献   
19.
Irradiation of individual cell nuclei with charged-particle microbeams requires accurate identification and localization of cells using Hoechst staining and UV illumination before computer-monitored localization of each cell. Using Fourier-transform infrared microspectroscopy (FT-IRM), we investigated whether the experimental conditions used for cell recognition induce cellular changes prior to irradiation and compared biochemical changes and DNA damage after targeted and nontargeted irradiation with alpha particles delivered by macro- or microbeams, using gamma radiation as a reference. Molecular damage in single HaCaT cells was studied by means of FT-IRM and comet assay (Gault et al., Int. J. Radiat. Biol. 81, 767-779, 2005). Hoechst 33342-stained HaCaT cells were exposed to single doses of 2 Gy (239)Pu alpha particles from a broad-beam irradiator, five impacted alpha particles from a microbeam irradiator, or 6 Gy gamma rays from (137)Cs, each of which resulted in about 5% clonogenic survival. FT-IRM of control cells indicated that Hoechst binding to nuclear DNA induced subtle changes in DNA conformation, and its excitation under UV illumination induced a dramatic shift of the DNA conformation from A to B as well as major DNA damage as measured by the comet assay. Comparison of the FT-IRM spectra of cells exposed to gamma rays or alpha particles specifically targeted to the nucleus, alpha particles from a broad-beam irradiator revealed spectral changes corresponding to all changes in constitutive bases in nucleic acids, suggesting oxidative damage in these bases, as well as structural damage in the deoxyribose-phosphate backbone of DNA and the osidic structure of nucleic acids. Concomitantly, spectral changes specific to protein suggested structural modifications. Striking differences in IR spectra between targeted microbeam- and nontargeted macrobeam-irradiated cells indicated greater residual unrepaired or misrepaired damage after microbeam irradiation. This was confirmed by the comet assay data. These results show that FT-IRM, together with the comet assay, is useful for assessing direct radiation-induced damage to nucleic acids and proteins in single cells and for investigating the effects of radiation quality. Significantly, FT-IRM revealed that Hoechst 33342 binding to DNA and exposure to UV light induce a dramatic change in DNA conformation as well as DNA damage. These findings suggest that fluorochrome staining should be avoided in studies of ionizing radiation-induced bystander effects based on charged-particle microbeam irradiation. An alternative cell nucleus recognition system that avoids nuclear matrix damage and its possible contribution to propagation of biological effects from irradiated cells to neighboring nontargeted cells needs to be developed.  相似文献   
20.
For several decades, lipid biologists have investigated how sphingolipids contribute to physiology, cell biology, and cell fate. Foremost among these discoveries is the finding that the bioactive sphingolipids ceramide, sphingosine, and sphingosine-1-phosphate (S1P) have diverse and often opposing effects on cell fate. Interestingly, these bioactive sphingolipids can be interconverted by just a few enzymatic reactions. Therefore, much attention has been paid to the enzymes which govern these reactions with a disproportionate amount of focus on the enzyme sphingosine kinase 1 (SK1). Several studies have found that tissue expression of SK1 correlates with cancer stage, chemotherapy response, and tumor aggressiveness. In addition, overexpression of SK1 in multiple cancer cell lines increases their resistance to chemotherapy, promotes proliferation, allows for anchorage independent growth, and increases local angiogenesis. Inhibition of SK1 using either pharmacological inhibitors or by crossing SK1 null mice has shown promise in many xenograft models of cancer, as well as several genetic and chemically induced mouse models of carcinogenesis. Here, we review the majority of the evidence that suggests SK1 is a promising target for the prevention and/or treatment of various cancers. Also, we strongly advocate for further research into basic mechanisms of bioactive sphingolipid signaling, and an increased focus on the efficacy of SK inhibitors in non-xenograft models of cancer progression.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号