首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   98篇
  免费   11篇
  2021年   1篇
  2020年   1篇
  2018年   1篇
  2017年   2篇
  2016年   3篇
  2015年   2篇
  2014年   2篇
  2013年   3篇
  2012年   8篇
  2011年   2篇
  2010年   1篇
  2009年   2篇
  2008年   3篇
  2007年   1篇
  2005年   4篇
  2004年   2篇
  2003年   1篇
  2002年   4篇
  2001年   4篇
  2000年   2篇
  1999年   6篇
  1998年   6篇
  1995年   1篇
  1993年   2篇
  1992年   1篇
  1990年   1篇
  1989年   3篇
  1988年   2篇
  1987年   2篇
  1985年   4篇
  1984年   1篇
  1983年   2篇
  1982年   3篇
  1981年   4篇
  1979年   3篇
  1977年   5篇
  1976年   1篇
  1974年   2篇
  1973年   1篇
  1970年   1篇
  1966年   1篇
  1964年   1篇
  1961年   2篇
  1950年   1篇
  1937年   1篇
  1925年   1篇
  1920年   1篇
  1915年   1篇
排序方式: 共有109条查询结果,搜索用时 15 毫秒
61.
Hydration is an important factor in regulating the phase behaviour of lipids and besides affects their interactions with other compounds relevant for biological membranes. We present a reliable and fast method to detect and characterise hydration-induced phase transitions in phospholipids by means of small-angle synchrotron X-ray scattering. Films consisting of aggregations of representatives of the two important lipid classes lecithins (DPPC a, POPC and OPPC,a for abbreviations, see below) and cephalins (DPPE and DOPE) were investigated at room temperature in dependence on relative humidity. Qualitative changes in the sets of the diffraction patterns obtained in dynamic hydration/dehydration scans were taken as markers indicating the existence of lyotropic phase transitions. The efficiency of this methodology is demonstrated by illustrating the course of hydration-driven phase transitions between lamellar as well as nonlamellar phases. In detail, this was realised for chain melting in the mixed-chain lipids, POPC and OPPC, and for a novel nonlamellar-phase transition for DOPE between a disordered inverted ribbon phase designated as Palpha and the canonical H(II), phase, respectively.  相似文献   
62.
Certain migratory birds can sense the Earth's magnetic field. The nature of this process is not yet properly understood. Here we offer a simple explanation according to which birds literally see the local magnetic field through the impact of a physical rather than a chemical signature of the radical pair: a transient, long-lived electric dipole moment. Based on this premise, our picture can explain recent surprising experimental data indicating long lifetimes for the radical pair. Moreover, there is a clear evolutionary path toward this field-sensing mechanism: it is an enhancement of a weak effect that may be present in many species.  相似文献   
63.
64.
65.
Seventeen bacterial strains previously identified as Vibrio harveyi (Baumann et al. 1981) or V. carchariae (Grimes et al. 1984) and the type strains of V. harveyi, V. carchariae and V. campbellii were analyzed by 16S ribosomal DNA (rDNA) sequencing. Four clusters were identified in a phylogenetic analysis performed by comparing a 746 base pair fragment of the 16S rDNA and previously published sequences of other closely related Vibrio species. The type strains of V. harveyi and V. carchariae and about half of the strains identified as V. harveyi or V. carchariae formed a single, well-supported cluster designed as 'bona fide' V. harveyi/carchariae. A second more heterogeneous cluster included most other strains and the V. campbellii type strain. Two remaining strains are shown to be more closely related to V. rumoiensis and V. mediterranei. 16S rDNA sequencing has confirmed the homogeneity and synonymy of V. harveyi and V. carchariae. Analysis of API20E biochemical profiles revealed that they are insufficient by themselves to differentiate V. harveyi and V. campbellii strains. 16S rDNA sequencing, however, can be used in conjunction with biochemical techniques to provide a reliable method of distinguishing V. harveyi from other closely related species.  相似文献   
66.
Arg(82) is one of the four buried charged residues in the retinal binding pocket of bacteriorhodopsin (bR). Previous studies show that Arg(82) controls the pK(a)s of Asp(85) and the proton release group and is essential for fast light-induced proton release. To further investigate the role of Arg(82) in light-induced proton pumping, we replaced Arg(82) with histidine and studied the resulting pigment and its photochemical properties. The main pK(a) of the purple-to-blue transition (pK(a) of Asp(85)) is unusually low in R82H: 1.0 versus 2.6 in wild type (WT). At pH 3, the pigment is purple and shows light and dark adaptation, but almost no light-induced Schiff base deprotonation (formation of the M intermediate) is observed. As the pH is increased from 3 to 7 the M yield increases with pK(a) 4.5 to a value approximately 40% of that in the WT. A transition with a similar pK(a) is observed in the pH dependence of the rate constant of dark adaptation, k(da). These data can be explained, assuming that some group deprotonates with pK(a) 4.5, causing an increase in the pK(a) of Asp(85) and thus affecting k(da) and the yield of M. As the pH is increased from 7 to 10.5 there is a further 2.5-fold increase in the yield of M and a decrease in its rise time from 200 &mgr;s to 75 &mgr;s with pK(a) 9. 4. The chromophore absorption band undergoes a 4-nm red shift with a similar pK(a). We assume that at high pH, the proton release group deprotonates in the unphotolyzed pigment, causing a transformation of the pigment into a red-shifted "alkaline" form which has a faster rate of light-induced Schiff base deprotonation. The pH dependence of proton release shows that coupling between Asp(85) and the proton release group is weakened in R82H. The pK(a) of the proton release group in M is 7.2 (versus 5.8 in the WT). At pH < 7, most of the proton release occurs during O --> bR transition with tau approximately 45 ms. This transition is slowed in R82H, indicating that Arg(82) is important for the proton transfer from Asp(85) to the proton release group. A model describing the interaction of Asp(85) with two ionizable residues is proposed to describe the pH dependence of light-induced Schiff base deprotonation and proton release.  相似文献   
67.
68.
69.
Mechanisms to explain disturbance of honey bee colonies under a 765-kV, 60-Hz transmission line [electric (E) field = 7 kV/m] fall into two categories: direct bee perception of enhanced in-hive E fields, and perception of shock from induced currents. The same adverse biological effects previously observed in honey bee colonies exposed under a 765-kV transmission line can be reproduced by exposing worker bees to shock or E field within elongated hive entranceways (= tunnels). Exposure to intense E field caused disturbance only if bees were in contact with a conductive substrate. E-field and shock exposure can be separated and precisely defined within tunnels, eliminating dosimetric vagaries that occur when entire hives are exposed to E field.  相似文献   
70.
This work explores mechanisms for disturbance of honey bee colonies under a 765 kV, 60-Hz transmission line [electric (E) field = 7 kV/m] observed in previous studies. Proposed mechanisms fell into two categories: direct bee perception of enhanced in-hive E fields and perception of shock from induced currents. The adverse biological effects could be reproduced in simulations where only the worker bees were exposed to shock or to E field in elongated hive entranceways (=tunnels). We now report the results of full-scale experiments using the tunnel exposure scheme, which assesses the contribution of shock and intense E field to colony disturbance. Exposure of worker bees (1,400 h) to 60-Hz E fields including 100 kV/m under moisture-free conditions within a nonconductive tunnel causes no deleterious affect on colony behavior. Exposure of bees in conductive (e.g., wet) tunnels produces bee disturbance, increased mortality, abnormal propolization, and possible impairment of colony growth. We propose that this substrate dependence of bee disturbance is the result of perception of shock from coupled body currents and enhanced current densities postulated to exist in the legs and thorax of bees on conductors. Similarly, disturbance occurs when bees are exposed to step-potential-induced currents. At 275–350 nA single bees are disturbed; at 600 nA bees begin abnormal propolization behavior; and stinging occurs at 900 nA. We conclude that biological effects seen in bee colonies under a transmission line are primarily the result of electric shock from induced hive currents. This evaluation is based on the limited effects of E-field exposure in tunnels, the observed disturbance thresholds caused by shocks in tunnels, and the ability of hives exposed under a transmission line to source currents 100–1,000 times the shock thresholds.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号