首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   683篇
  免费   59篇
  742篇
  2023年   3篇
  2022年   4篇
  2021年   16篇
  2020年   5篇
  2019年   9篇
  2018年   8篇
  2017年   7篇
  2016年   14篇
  2015年   19篇
  2014年   22篇
  2013年   36篇
  2012年   30篇
  2011年   39篇
  2010年   38篇
  2009年   40篇
  2008年   31篇
  2007年   21篇
  2006年   38篇
  2005年   20篇
  2004年   22篇
  2003年   17篇
  2002年   20篇
  2001年   20篇
  2000年   24篇
  1999年   27篇
  1998年   14篇
  1997年   13篇
  1996年   14篇
  1995年   8篇
  1994年   12篇
  1993年   6篇
  1992年   9篇
  1991年   12篇
  1990年   15篇
  1989年   5篇
  1988年   15篇
  1987年   8篇
  1986年   8篇
  1985年   3篇
  1984年   8篇
  1983年   12篇
  1977年   3篇
  1974年   4篇
  1973年   7篇
  1972年   3篇
  1970年   6篇
  1969年   2篇
  1965年   2篇
  1962年   2篇
  1955年   2篇
排序方式: 共有742条查询结果,搜索用时 15 毫秒
51.
52.
53.
Hypoxia is a feature of solid tumors. Most tumors are at least partially hypoxic. This hypoxic environment plays a critical role in promoting resistance to anticancer drugs. PHLPP, a novel family of Ser/Thr protein phosphatases, functions as a tumor suppressor in colon cancers. Here, we show that the expression of both PHLPP isoforms is negatively regulated by hypoxia/anoxia in colon cancer cells. Interestingly, a hypoxia-induced decrease of PHLPP expression is attenuated by knocking down HIF1α but not HIF2α. Whereas the mRNA levels of PHLPP are not significantly altered by oxygen deprivation, the reduction of PHLPP expression is caused by decreased protein translation downstream of mTOR and increased degradation. Specifically, hypoxia-induced downregulation of PHLPP is partially rescued in TSC2 or 4E-BP1 knockdown cells as the result of elevated mTOR activity and protein synthesis. Moreover, oxygen deprivation destabilizes PHLPP protein by decreasing the expression of USP46, a deubiquitinase of PHLPP. Functionally, downregulation of PHLPP contributes to hypoxia-induced chemoresistance in colon cancer cells. Taken together, we have identified hypoxia as a novel mechanism by which PHLPP is downregulated in colon cancer, and the expression of PHLPP may serve as a biomarker for better understanding of chemoresistance in cancer treatment.  相似文献   
54.
55.
56.
Microorganisms encounter diverse stress conditions in their native habitats but also during fermentation processes, which have an impact on industrial process performance. These environmental stresses and the physiological reactions they trigger, including changes in the protein folding/secretion machinery, are highly interrelated. Thus, the investigation of environmental factors, which influence protein expression and secretion is still of great importance. Among all the possible stresses, temperature appears particularly important for bioreactor cultivation of recombinant hosts, as reductions of growth temperature have been reported to increase recombinant protein production in various host organisms. Therefore, the impact of temperature on the secretion of proteins with therapeutic interest, exemplified by a model antibody Fab fragment, was analyzed in five different microbial protein production hosts growing under steady-state conditions in carbon-limited chemostat cultivations. Secretory expression of the heterodimeric antibody Fab fragment was successful in all five microbial host systems, namely Saccharomyces cerevisiae, Pichia pastoris, Trichoderma reesei, Escherichia coli and Pseudoalteromonas haloplanktis. In this comparative analysis we show that a reduction of cultivation temperature during growth at constant growth rate had a positive effect on Fab 3H6 production in three of four analyzed microorganisms, indicating common physiological responses, which favor recombinant protein production in prokaryotic as well as eukaryotic microbes.  相似文献   
57.

Background

The number of completely sequenced plastid genomes available is growing rapidly. This array of sequences presents new opportunities to perform comParative analyses. In comParative studies, it is often useful to compare across wide phylogenetic spans and, within angiosperms, to include representatives from basally diverging lineages such as the genomes reported here: Nuphar advena (from a basal-most lineage) and Ranunculus macranthus (a basal eudicot). We report these two new plastid genome sequences and make comparisons (within angiosperms, seed plants, or all photosynthetic lineages) to evaluate features such as the status of ycf15 and ycf68 as protein coding genes, the distribution of simple sequence repeats (SSRs) and longer dispersed repeats (SDR), and patterns of nucleotide composition.

Results

The Nuphar [GenBank:NC_008788] and Ranunculus [GenBank:NC_008796] plastid genomes share characteristics of gene content and organization with many other chloroplast genomes. Like other plastid genomes, these genomes are A+T-rich, except for rRNA and tRNA genes. Detailed comparisons of Nuphar with Nymphaea, another Nymphaeaceae, show that more than two-thirds of these genomes exhibit at least 95% sequence identity and that most SSRs are shared. In broader comparisons, SSRs vary among genomes in s of abundance and length and most contain repeat motifs based on A and T nucleotides.

Conclusion

SSR and SDR abundance varies by genome and, for SSRs, is proportional to genome size. Long SDRs are rare in the genomes assessed. SSRs occur less frequently than predicted and, although the majority of the repeat motifs do include A and T nucleotides, the A+T bias in SSRs is less than that predicted from the underlying genomic nucleotide composition. In codon usage third positions show an A+T bias, however variation in codon usage does not correlate with differences in A+T-richness. Thus, although plastome nucleotide composition shows "A+T richness", an A+T bias is not apparent upon more in-depth analysis, at least in these aspects. The pattern of evolution in the sequences identified as ycf15 and ycf68 is not consistent with them being protein-coding genes. In fact, these regions show no evidence of sequence conservation beyond what is normal for non-coding regions of the IR.  相似文献   
58.

Background

Metabolic syndrome is a cluster of common cardiovascular risk factors that includes hypertension and insulin resistance. Hypertension and diabetes mellitus are frequent comorbidities and, like metabolic syndrome, increase the risk of cardiovascular events. Telmisartan, an antihypertensive agent with evidence of partial peroxisome proliferator-activated receptor activity-gamma (PPARγ) activity, may improve insulin sensitivity and lipid profile in patients with metabolic syndrome.

Methods

In a double-blind, parallel-group, randomized study, patients with World Health Organization criteria for metabolic syndrome received once-daily doses of telmisartan (80 mg, n = 20) or losartan (50 mg, n = 20) for 3 months. At baseline and end of treatment, fasting and postprandial plasma glucose, insulin sensitivity, glycosylated haemoglobin (HBA1c) and 24-hour mean systolic and diastolic blood pressures were determined.

Results

Telmisartan, but not losartan, significantly (p < 0.05) reduced free plasma glucose, free plasma insulin, homeostasis model assessment of insulin resistance and HbAic. Following treatment, plasma glucose and insulin were reduced during the oral glucose tolerance test by telmisartan, but not by losartan. Telmisartan also significantly reduced 24-hour mean systolic blood pressure (p < 0.05) and diastolic blood pressure (p < 0.05) compared with losartan.

Conclusion

As well as providing superior 24-hour blood pressure control, telmisartan, unlike losartan, displayed insulin-sensitizing activity, which may be explained by its partial PPARγ activity.  相似文献   
59.
Epipodophyllotoxins are effective antitumour drugs that trap eukaryotic DNA topoisomerase II in a covalent complex with DNA. Based on DNA cleavage assays, the mode of interaction of these drugs was proposed to involve amino acid residues of the catalytic site. An in vitro binding study, however, revealed two potential binding sites for etoposide within human DNA topoisomerase IIα (htopoIIα), one in the catalytic core of the enzyme and one in the ATP-binding N-terminal domain. Here we have tested how N-terminal mutations that reduce the affinity of the site for etoposide or ATP affect the sensitivity of yeast cells to etoposide. Surprisingly, when introduced into full-length enzymes, mutations that lower the drug binding capacity of the N-terminal domain in vitro render yeast more sensitive to epipodophyllotoxins. Consistently, when the htopoIIα N-terminal domain alone is overexpressed in the presence of yeast topoII, cells become more resistant to etoposide. Point mutations that weaken etoposide binding eliminate this resistance phenotype. We argue that the N-terminal ATP-binding pocket competes with the active site of the holoenzyme for binding etoposide both in cis and in trans with different outcomes, suggesting that each topoisomerase II monomer has two non-equivalent drug-binding sites.  相似文献   
60.
Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most frequent cause of autosomal-dominant Parkinson's disease (PD). The second known autosomal-dominant PD gene (SNCA) encodes α-synuclein, which is deposited in Lewy bodies, the neuropathological hallmark of PD. LRRK2 contains a kinase domain with homology to mitogen-activated protein kinase kinase kinases (MAPKKKs) and its activity has been suggested to be a key factor in LRRK2-associated PD. Here we investigated the role of LRRK2 in signal transduction pathways to identify putative PD-relevant downstream targets. Over-expression of wild-type [wt]LRRK2 in human embryonic kidney HEK293 cells selectively activated the extracellular signal-regulated kinase (ERK) module. PD-associated mutants G2019S and R1441C, but not kinase-dead LRRK2, induced ERK phosphorylation to the same extent as [wt]LRRK2, indicating that this effect is kinase-dependent. However, ERK activation by mutant R1441C and G2019S was significantly slower than that for [wt]LRRK2, despite similar levels of expression. Furthermore, induction of the ERK module by LRRK2 was associated to a small but significant induction of SNCA, which was suppressed by treatment with the selective MAPK/ERK kinase inhibitor U0126. This pathway linking the two dominant PD genes LRRK2 and SNCA may offer an interesting target for drug therapy in both familial and sporadic disease.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号