首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10732篇
  免费   1068篇
  国内免费   18篇
  11818篇
  2022年   65篇
  2021年   104篇
  2020年   61篇
  2019年   100篇
  2018年   115篇
  2017年   134篇
  2016年   225篇
  2015年   354篇
  2014年   426篇
  2013年   506篇
  2012年   723篇
  2011年   716篇
  2010年   503篇
  2009年   440篇
  2008年   663篇
  2007年   697篇
  2006年   627篇
  2005年   657篇
  2004年   651篇
  2003年   648篇
  2002年   661篇
  2001年   119篇
  2000年   89篇
  1999年   115篇
  1998年   192篇
  1997年   132篇
  1996年   115篇
  1995年   117篇
  1994年   118篇
  1993年   109篇
  1992年   88篇
  1991年   87篇
  1990年   72篇
  1989年   85篇
  1988年   81篇
  1987年   72篇
  1986年   79篇
  1985年   75篇
  1984年   92篇
  1983年   87篇
  1982年   104篇
  1981年   115篇
  1980年   104篇
  1979年   62篇
  1978年   59篇
  1977年   46篇
  1976年   57篇
  1974年   50篇
  1973年   45篇
  1972年   42篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
The remarkable responsiveness of dog morphology to selection is a testament to the mutability of mammals. The genetic sources of this morphological variation are largely unknown, but some portion is due to tandem repeat length variation in genes involved in development. Previous analysis of tandem repeats in coding regions of developmental genes revealed fewer interruptions in repeat sequences in dogs than in the orthologous repeats in humans, as well as higher levels of polymorphism, but the fragmentary nature of the available dog genome sequence thwarted attempts to distinguish between locus-specific and genome-wide origins of this disparity. Using whole-genome analyses of the human and recently completed dog genomes, we show that dogs possess a genome-wide increase in the basal germ-line slippage mutation rate. Building on the approach that gave rise to the initial observation in dogs, we sequenced 55 coding repeat regions in 42 species representing 10 major carnivore clades and found that a genome-wide elevated slippage mutation rate is a derived character shared by diverse wild canids, distinguishing them from other Carnivora. A similarly heightened slippage profile was also detected in rodents, another taxon exhibiting high diversity and rapid evolvability. The correlation of enhanced slippage rates with major evolutionary radiations suggests that the possession of a "slippery" genome may bestow on some taxa greater potential for rapid evolutionary change.  相似文献   
992.
Nonneutralizing Abs may play a role in protecting animals and humans from lentiviral infections. We explored the Ab-dependent, cell-mediated virus inhibition (ADCVI) Ab response to recombinant gp120 (rgp120) vaccination in sera from 530 participants in the Vax 004 trial. Serum ADCVI activity was measured against a clinical R5 strain of HIV-1 using peripheral blood mononuclear effector cells from healthy donors. The level of vaccine-induced ADCVI activity correlated inversely with the rate of acquiring HIV infection following vaccination, such that for every 10% increase in ADCVI activity, there was a 6.3% decrease in the hazard rate of infection (p=0.019). Some vaccinated individuals also mounted an ADCVI response against two other clinical R5 strains of HIV-1. However, ADCVI activity correlated poorly with neutralizing or CD4-gp120-blocking Ab activity measured against laboratory strains. Finally, the degree to which the ADCVI Ab response predicted the rate of infection was influenced by polymorphisms at the FcgammaRIIa and FcgammaRIIIa gene loci. These data indicate that rgp120 vaccination can elicit Abs with antiviral activity against clinical strains of HIV-1. However, such activity requires the presence of FcR-bearing effector cells. Our results provide further evidence that ADCVI may play a role in preventing HIV infection.  相似文献   
993.
994.
Infected peripheral blood monocytes are proposed to play a key role in the hematogenous dissemination of human cytomegalovirus (HCMV) to tissues, a critical step in the establishment of HCMV persistence and the development of HCMV-associated diseases. We recently provided evidence for a unique strategy involved in viral dissemination: HCMV infection of primary human monocytes promotes their transendothelial migration and differentiation into proinflammatory macrophages permissive for the replication of the original input virus. To decipher the mechanism of hematogenous spread, we focused on the viral dysregulation of early cellular processes involved in transendothelial migration. Here, we present evidence that both phosphatidylinositol 3-kinase [PI(3)K] and NF-kappaB activities were crucial for the HCMV induction of monocyte motility and firm adhesion to endothelial cells. We found that the beta(1) integrins, the beta(2) integrins, intracellular adhesion molecule 1 (ICAM-1), and ICAM-3 were upregulated following HCMV infection and that they played a key role in the firm adhesion of infected monocytes to the endothelium. The viral regulation of adhesion molecule expression is complex, with PI(3)K and NF-kappaB affecting the expression of each adhesion molecule at different stages of the expression cascade. Our data demonstrate key roles for PI(3)K and NF-kappaB signaling in the HCMV-induced cellular changes in monocytes and identify the biological rationale for the activation of these pathways in infected monocytes, which together suggest a mechanism for how HCMV promotes viral spread to and persistence within host organs.  相似文献   
995.
996.
MEKK2 and MEK5 encode Phox/Bem1p (PB1) domains that heterodimerize with one another. MEKK2, MEK5, and extracellular signal-related kinase 5 (ERK5) form a ternary complex through interactions involving the MEKK2 and MEK5 PB1 domains and a 34-amino-acid C-terminal extension of the MEK5 PB1 domain. This C-terminal extension encodes an ERK5 docking site required for MEK5 activation of ERK5. The PB1 domains bind in a front-to-back arrangement, with a cluster of basic amino acids in the front of the MEKK2 PB1 domain binding to the back-end acidic clusters of the MEK5 PB1 domain. The C-terminal moiety, including the acidic cluster of the MEKK2 PB1 domain, is not required for MEK5 binding and binds MKK7. Quiescent MEKK2 preferentially binds MEK5, and MEKK2 activation results in ERK5 activation. Activated MEKK2 binds and activates MKK7, leading to JNK activation. The findings define how the MEKK2 and MEK5 PB1 domains are uniquely used for differential binding of two mitogen-activated protein kinase kinases, MEK5 and MKK7, for the coordinated control of ERK5 and c-Jun N-terminal kinase activation.  相似文献   
997.
998.
The neuropathogenesis of influenza-associated encephalopathy in children and Reye's syndrome remains unclear. A surveillance effort conducted during 2000-2003 in South-West Japan reveals that almost all fatal and handicapped influenza-associated encephalopathy patients exhibit a disorder of mitochondrial β-oxidation with elevated serum acylcarnitine ratios (C16:0+C18:1)/C2. Here we show invasion by a non-neurotropic epidemic influenza A H3N2 virus in cerebral capillaries with progressive brain edema after intranasal infection of mice having impaired mitochondrial β-oxidation congenitally or posteriorly in the newborn/ suckling periods. Mice genetically lacking of carnitine transporter OCTN2, resulting in carnitine deficiency and impaired β-oxidation, exhibited significant higher virus-genome numbers in the brain, accumulation of virus antigen exclusively in the cerebral capillaries and increased brain vascular permeability compared to in wild type mice. Mini-plasmin, which proteolytically potentiates influenza virus multiplication in vivo and destroys the blood-brain barrier, accumulated with virus antigen in the brain capillaries of OCTN2-deficient mice but only a little in wild-type mice. These results suggest that the impaired mitochondrial β-oxidation changes the susceptibility to a non-neurotropic influenza A virus as to multiplication in the brain capillaries and to cause brain edema. These pathological findings in the brain of mice having impaired mitochondrial β-oxidation after influenza virus infection may have implications for human influenza-associated encephalopathy.  相似文献   
999.
Detailed knowledge of the pH-dependence in both folded and unfolded states of proteins is essential to understand the role of electrostatics in protein stability. The increasing number of natively disordered proteins constitutes an excellent source for the NMR analysis of pKa values in the unfolded state of proteins. However, the tendency of many natively disordered proteins to aggregate via intermolecular hydrophobic clusters limits their NMR analysis over a wide pH range. To assess whether the pKa values in natively disordered polypeptides can be extrapolated from NMR measurements in the presence of denaturants, the natively disordered backbone of the C-terminal fragment 75 to 105 of Human Thioredoxin was studied. First, assignments using triple resonance experiments were performed to confirm lack of secondary structure. Then the pH-dependence of the amides and carboxylate side chains of Glu residues (Glu88, Glu95, Glu98, and Glu103) in the pH range from 2.0 to 7.0 was monitored using 2D 1H15N HSQC and 3D C(CO)NH experiments, and the behavior of their amides and corresponding carboxyl groups was compared to confirm the absence of nonlocal interactions. Lastly, the effect of increasing dimethyl urea concentration on the pKa values of these Glu residues was monitored. The results indicate that: (i) the dispersion in the pKa of carboxyl groups and the pH midpoints of amides in Glu residues is about 0.5 pH units and 0.6 pH units, respectively; (ii) the backbone amides of the Glu residues exhibit pH midpoints which are within 0.2 pH units from those of their carboxylates; (iii) the addition of denaturant produces upshifts in the pKa values of Glu residues that are nearly independent of their position in the sequence; and (iv) these upshifts show a nonlinear behavior in denaturant concentration, complicating the extrapolation to zero denaturant. Nevertheless, the relative ordering of the pKa values of Glu residues is preserved over the whole range of denaturant concentrations indicating that measurements at high denaturant concentration (e.g. 4 M dimethyl urea) can yield a qualitatively correct ranking of the pKa of these residues in natively disordered proteins whose pH-dependence cannot be monitored directly by NMR.  相似文献   
1000.
Treatment of HIV-infected individuals with antiretroviral agents selects for drug-resistant mutants, resulting in frequent treatment failures. Although the major antiretroviral resistance mutations are routinely characterized by DNA sequencing, treatment failures are still common, probably in part because undetected rare resistance mutations facilitate viral escape. Here we combined DNA bar coding and massively parallel pyrosequencing to quantify rare drug resistance mutations. Using DNA bar coding, we were able to analyze seven viral populations in parallel, overall characterizing 118093 sequence reads of average length 103bp. Analysis of a control HIV mixture showed that resistance mutations present as 5% of the population could be readily detected without false positive calls. In three samples of multidrug-resistant HIV populations from patients, all the drug-resistant mutations called by conventional analysis were identified, as well as four additional low abundance drug resistance mutations, some of which would be expected to influence the response to antiretroviral therapy. Methods for sensitive characterization of HIV resistance alleles have been reported, but only the pyrosequencing method allows all the positions at risk for drug resistance mutations to be interrogated deeply for many HIV populations in a single experiment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号